
Multi-Objective BDD Optimization
for RRAM based Circuit Design

Saeideh Shirinzadeh∗, Mathias Soeken†, Rolf Drechsler∗‡
∗Department of Mathematics and Computer Science, University of Bremen, Germany

†Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
‡Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{saeideh,drechsle}@cs.uni-bremen.de, mathias.soeken@epfl.ch

Abstract—Resistive switching property enables various
promising applications such as design of non-volatile in-memory
computing devices which has attracted high attention to Resistive
Random Access Memories (RRAMs). In this work, we present
a multi-objective BDD optimization approach for RRAM based
logic circuit design. Dissimilar to classical BDD optimization,
evaluating the cost metrics of the circuits in this case does not
only depend on the number of BDD nodes but is more advanced.
We have utilized a non-dominated sorting genetic algorithm for
bi-objective BDD optimization with respect to the number of
required RRAMs and computational steps addressing the area
and delay of the resulting circuits, respectively. The algorithm
also allows preference to one of the objectives if it is of higher
significance. Experimental results show that the proposed multi-
objective genetic algorithm achieves considerable reduction in
both aforementioned criteria in comparison with an existing
approach.

I. INTRODUCTION
Binary Decision Diagrams (BDDs) are graph based data

structures and are proven to be efficient for representing and
manipulating Boolean functions. Electronic design automation
and formal verification greatly benefit from BDDs in many
applications. BDD optimization approaches especially node
minimization techniques have been widely used in these
applications. BDDs can be transferred directly to circuits by
mapping each node to a multiplexer which makes the number
of nodes the main cost metric. Nonetheless, there are few
approaches which optimize BDDs with respect to other criteria
such as the number of paths or expected and average path length
[1]. Hence, in the majority of applications BDD optimization
is classically defined as minimizing the number of BDD nodes
which can be directly mapped to multiplexers to synthesize a
circuit.

The abrupt switching capability of an oxide insulator
sandwiched by two metal electrodes was known from 1960s,
but it did not come into interest for several decades until
feasible device structures were proposed [2]. Nowadays, a
variety of two-terminal devices based on resistance switching
property exist which use different materials. In [3], Resistive
Random Access Memories (RRAMs) were suggested as a
physical implementation for the theory of memristors proposed
in [4]. Although some researchers argued differences between
memristor and RRAM, in this paper we use RRAM to refer to
a generic resistive switching memory.

High scalibilty of RRAMs [2] makes it possible to imple-
ment ultra dense resistive memory arrays in hybrid nano/CMOS
technology [5]. Such hybrid architectures using memristive
devices are of high interest for their possible applications in

non-volatile memory design, digital and analog programmable
systems, and neuromorphic computing structures [6].

In [7], it was shown that Material Implication (IMP) can
be executed by resistive switches to build logic circuits. In the
same work a NAND gate was proposed that consists of three
RRAMs and thus enables to realize any Boolean function. This
allows advanced computer architectures different from classical
von Neumannn architectures by providing memories able to
perform computing operations [8]. So far, researchers have
proposed various resistive logic circuits based on IMP operators.
An RRAM based 2-to-1 multiplexer (MUX) containing six
RRAMs was proposed in [6] that requires seven operations.
In [9], a similar structure but more efficient in the number
of RRAMs and operations was used for synthesis of Boolean
functions using BDDs.

Although RRAM based implication logic is sufficient
to express any Boolean function, the number of required
computational steps to synthesize a given function is a real
drawback [10]. So far, few works have been performed on the
optimization of RRAM based in-memory computing circuits
which aims at reducing the number of required steps and
RRAMs. Besides BDDs, And-Inverter Graphs (AIGs) have
been also used for logic synthesis with resistive memories [11].
However, none of these data structures have been optimized
with respect to the cost metrics of in-memory computing circuit
design. To the best of our knowledge, optimization for RRAM
based design has been only performed on Majority-Inverter
Graphs (MIGs) until now [12].

In this paper, BDDs using the MUX design proposed in
[9] are optimized with respect to the number of RRAMs and
computational steps which are related to the area and delay of
the resulting circuits, respectively. The proposed multi-objective
genetic algorithm minimizes both mentioned criteria for parallel
evaluation where one MUX is considered for each node in a
BDD level to synthesize the given function.

The remainder of this paper is organized as follows. Section
II contains the basic principles of RRAM based logic and a brief
description of the existing BDD optimization approaches. The
proposed BDD optimization algorithm is discussed in Section
III. Section IV presents the experimental results and Section V
concludes the paper.

II. BACKGROUND
This section describes the employed RRAM based 2-to-1

multiplexer circuit as well as discussing the state-of-the-art
BDD optimization approaches. In order to keep the paper
self-contained the implementation of the basic resistive IMP

RG

P Q

VCOND VSET

(a)

p q q′

0 0 1
0 1 1
1 0 0
1 1 1

(b)

Fig. 1. IMP operation. (a) Implementation of IMP using resistive switches.
(b) Truth table for IMP (q′ ← p IMP q) [7]

RG

S

Vs

A

Va

B

Vb

X

Vx

Y

Vy

Fig. 2. RRAM based MUX circuit [9]

operation is also explained prior to introducing the MUX design.

A. RRAM based MUX
As mentioned before, the BDD nodes can be directly

mapped to MUXes using resistive switches. The basic principles
of resistive logic and the structure of an RRAM based MUX
are explained in the following.

Any Boolean function can be expressed in one of the
standard forms by using only Material Implication (IMP) and
FALSE operation that always assigns the logic value 0. Fig. 1
demonstrates the basic implementation of an IMP gate including
two resistive switches denoted by P and Q that are connected
by a common horizontal nanowire to a load resistor RG [?].
Tri-state voltage drivers with a high-impedance output state for
the undriven case control the vertical nanowires. Three voltage
levels VSET, VCOND and VCLEAR are applied to perform IMP
and FALSE operations by placing the switches in low-resistance
state (logic 1) or high-resistance state (logic 0).

The FALSE operation can be executed by applying a
positive voltage VCLEAR to a switch. A switch can be assigned
to logic 1 by applying VSET, i.e., a negative voltage larger
than a threshold required to change the state of the driven
device, to its voltage driver. VCOND has a magnitude smaller
than VSET which cannot cause any state change. Nonetheless,
applying together VSET to Q and VCOND to P simultaneously,
the IMP operation can be implemented by interaction of two
pulses through P , Q, and the load resistance. The conditional
switching condition depends on the current logical states of p
and q, such that switch Q is set to 1 if P is in high-resistance
(p = 0) while it remains unchanged when P is in low-resistance
(p = 1) [7].

Fig. 2 shows the RRAM based MUX proposed in [9].
The implementation requires six computational steps and five
RRAMs of which three, named S, X and Y , are work RRAMs
which initial values are replaced with intermediate results or the
final output. The two other resistive switches, A and B, remain
unchanged during operations and are called input RRAMs [9].
The corresponding implication steps of the MUX realization
shown in Fig. 2 are as follows:

Step 1: S = s,A = a,B = b,X = 0, Y = 0
Step 2: x← s IMP x = s̄
Step 3: x← b IMP x = b̄ + s̄
Step 4: y ← x IMP y = b · s
Step 5: s← a IMP s = ā + s
Step 6: y ← s IMP y = a · s̄ + b · s
In the first step, a VCLEAR is applied to resistive switches

X and Y to execute the FALSE operation. At the same time, the
other three switches are also prepared by applying appropriate
pulses, VSET or VCLEAR, to their voltage drivers in order to
initialize their desired initial states. The remaining steps are
performed by sequential IMP operations that are executed by
applying simultaneous voltage pulses VCOND and VSET.

B. BDD optimization methods
BDDs are a representation for Boolean functions that are

canonical for a fixed variable ordering. BDD optimization is
the task of finding a variable ordering which minimizes the
considered cost metrics, e.g., the number of nodes in the BDD.
Improving the variable ordering to find the optimum BDD is
NP-complete [13].

BDD optimization is mainly defined as minimization of
the size of diagram, that is the number of BDD nodes. Exact
methods are the only category of classical size-driven BDD
optimization approaches that guarantee to determine the optimal
variable ordering. Nonetheless, the high order of run-time
and complexity is a serious drawback of these methods [1].
Sifting [14] is a well-known dynamic reordering based BDD
minimization technique that aims at finding the best position
of each input variable, assuming that the relative order of
other variables does not change. For this purpose, the adjacent
variables are swapped and the size of the resulting BDDs are
recorded. Finally, the optimum BDD is characterized by the
the variables fixed at positions which led to the BDD with
the minimum number of nodes. Heuristic approaches such as
Simulated Annealing (SA) [15] and Genetic Algorithms (GAs)
[16] have shown better performance than sifting. SA starts with
a randomly generated variable ordering. In each iteration, the
current ordering is kept or replaced by a neighboring ordering
based on a transition probability which allows uphill moves
in order to escape a local minimum. In [16], GA is combined
with sifting such that the initial population is first optimized by
sifting. GA terminates if the optimal variable ordering remains
unchanged after a certain number of generations. In the last step,
the optimal ordering is sifted to further improve the resulting
BDD’s size if possible.

The number of paths has been also considered as an
objective for BDD optimization due to its importance in some
applications. Modified Sifting (MS) [17] is a path minimization
method that is structurally similar to sifting with a different
objective. An evolutionary algorithm has been also proposed in
[18] for one-path optimization that has experimentally shown to
be able to achieve higher degree of minimization in comparison
with MS. In [19], a multi-objective evolutionary algorithm for
BDD optimization was proposed to minimize the number of
nodes and paths simultaneously. The algorithm has shown a
good trade-off between both objectives without any loss of
quality compared to the existing node or path minimization
techniques.

III. BDD OPTIMIZATION FOR RRAM BASED DESIGN
Optimization of RRAM based BDDs in this work is carried

out as a bi-objective problem aiming at minimizing the number
of RRAMs and computational steps simultaneously, i.e., finding
a trade-off between area and delay of the resulting circuits. For
this purpose, we have exploited a non-dominated sorting based
genetic algorithm that has been experimentally proven useful
in multi-objective BDD optimization [19]. In this section, we
first present how the objective functions, i.e., the number of
required RRAMs and steps, are calculated. Then, we explain
the framework of our algorithm and the employed variation
operators.

A. Objective functions
In [9], BDDs were evaluated for two types of serial

and parallel implementations for RRAM based design. Serial
implementation requires only one RRAM based MUX which
can be reused later by other BDD nodes. That means one MUX
in addition to a number of RRAMs required for fanouts and
complemented edges [20] suffice to build the BDD. Nonetheless,
in the presence of complemented edges, the number of required
steps to evaluate the Boolean function is greater than six times
the number of BDD nodes. It was experimentally shown in [9]
that the number of computational steps can rapidly increase
for functions with a large number of inputs. In order to escape
heavy delay penalties, BDDs are evaluated in parallel in this
work.

In the parallel implementation, each time one BDD level
is evaluated entirely starting from the level designating the
last ordered variable to the first ordered variable the so-called
root node. Therefore, regardless of the possible fanouts and
complemented edges in the BDD, the number of required
RRAMs is five times the maximum number of nodes in any
BDD level. Although, the number of RRAMs is increased
in comparison with the serial evaluation, the number of
computational steps can be remarkably lowered to the number
of BDD levels, i.e., the number of input variables of the given
function.

Table I shows how the objective functions are evaluated for
optimization. However, the larger part of the objective functions
are explained above, some additional RRAMs addressing
complemented edges and fanouts are still required. Every
complemented edge in the BDD requires a NOT gate to invert
its logic value. As shown in step 2 discussed in the previous
section, inverting a variable can be executed after an IMP
operation with a zero loaded RRAM. Accordingly, for each
MUX with a complemented input an extra RRAM should be
considered and set to FALSE (Z = 0) that can be performed in
parallel with the first loading step without any increase in the
number of steps. Then, an IMP operation should be executed
to complete the logic NOT operation. It is obvious that the
required IMP operations for all complemented edges in a level
can be carried out simultaneously that means for any level with
ingoing complemented edges only one extra step is required.
This implies that the number of additional steps required for
inverting all of the complemented edges cannot exceed the
number of BDD levels. Therefore, the number of steps to
evaluate a BDD possessing complemented edges is equal to the
the number of BDD levels with ingoing complemented edges
besides the basic value of level counts.

It is obvious that the RRAMs keeping the outputs of
each BDD level can be assigned to the inputs of the next

TABLE I. OBJECTIVE FUNCTIONS

Symbol Definition Value
N No. of input variables Given

FO
Maximum no. of nonconsecutive fanouts
in any BDD level Given

CEi
No. of ingoing complemented edges
in the ith BDD level

Given

NLi No. of nodes in the ith BDD level Given

L
No. of BDD levels with ingoing complemented
edges Given

R No. of RRAMs max
0≤i≤N

(5 ·NLi + CEi) + FO

S No. of computational steps 6 ·N + L

successive level and be reused without any loss of information.
Nonetheless, the results of nodes targeting levels which are not
right after their origin level might be lost during computations if
their corresponding RRAMs are rewritten by the next operations.
Thus, we consider extra RRAMs for such nonconsecutive
fanouts to retain the result of their origin nodes to be used as
an input signal of their target nodes. The required number
of RRAMs for this is equal to the maximum number of
such fanouts over all BDD levels. This will not increase
the number of steps because copying the results of nodes
with nonconsecutive fanouts in additional RRAMs and using
the stored value in the fanouts’ targets can be performed
simultaneously in the first data loading step of nodes on the
both sides of the fanouts.

B. Genetic algorithm framework
Here, we explain the framework of our multi-objective

BDD optimization algorithm. Genetic and more generally
evolutionary algorithms are known as powerful search tools and
are of high interest for multi-objective optimization especially
for solving NP-complete problems such as BDD optimization.
The employed BDD optimization algorithm is based on NSGA-
II (Non-dominated Sorting Genetic Algorithm) [21] which has
shown excellent performance for the optimization problems
with two or three objectives.

In general, an evolutionary algorithm consists of iteratively
applying two processes of selection and variation to a population
of possible solutions, i.e., a subset of the search space. Selection
decides which individuals in the population are good enough
to be used as parents by variation operators for generating
an offspring, as well as determining the survival strategy for
filling the population of the next generation. In our genetic
algorithm, we have utilized non-dominated sorting relation
to discriminate solutions during selection. Based on Pareto-
dominance, an individual x is said to dominate y if none of its
objective functions are greater than the corresponding objective
function in y, and x at least has one objective function smaller
than the corresponding one in y. According to non-dominated
sorting, every individual should be assigned to a fitness value
representing its overall level of dominance in such a way that
the first level of dominance contains non-dominated solutions
which are not dominated by any other solution in the population.

The general framework of our Multi-Objective Genetic Algo-
rithm (MOGA) is described in Algorithm 1. First, a population
of size N consisting of variable orderings representing a set
of BDDs is generated randomly. Then, the initial population
is evaluated to assign the corresponding number of RRAMs
and steps to each BDD. In step 3, the population is classified
into non-dominating fronts shown by {F1, F2, . . . } such that
members of each front are incomparable based on dominance.
Steps 6–18 are iterated for a certain number of generations.

The chosen parents for reproduction are results of a binary
tournament selection, that selects the individual with lower
fitness between two randomly chosen individuals. In step 6,
an offspring Qt with the same size as the current population
Pt is created after applying evolutionary operators such as
recombination and mutation to the selected parents. Thereafter,
Qt is evaluated and the union of the children and the current
populations, Rt is sorted. Starting from the first non-dominating
front, individuals are copied into the population of the next
generation Pt+1. This procedure is continued until the size of
the front is greater than the remaining slots in Pt+1. In this
case, the front’s members are sorted based on their density
information and then Pt+1 is filled with the first ordered lesser
crowded individuals.

Algorithm 1 MOGA for BDD optimization
1: P0 ← InitializePopulation
2: EvaluateObjectiveFunctions(P0)
3: {F1, F2, . . . } ← Non-dominatedSort(P0)
4: t ← 0
5: while the stopping criterion is not met do
6: Qt ← MakeOffspringPopulation(Pt+1)
7: EvaluateObjectiveFunctions(Qt)
8: Rt ← Pt ∪ Qt

9: {F1, F2, . . . } ← Non-dominatedSort(Rt)
10: Pt+1 ← ∅
11: i ← 1
12: while |Pt+1| + |Fi| ≤ N do
13: Pt+1 ← Pt+1 ∪ Fi

14: i ← i + 1
15: end while
16: DistanceSort(Fi)
17: Pt+1 ← Pt+1 ∪ Fi[1 : (N - |Pt+1|)]
18: t ← t + 1
19: end while

It might be desired to design smaller circuits at a fair cost
of delay or vice versa. In [19], relation priority dominance was
used in multi-objective BDD optimization to allow preference
to the more significant objectives. Our genetic algorithm is
enhanced with a priority vector which can be set by the user to
perform optimization with preference to the number of RRAMs
or steps.

C. Operators
In this section, the employed variation operators for creating

the offspring population are briefly explained. We have utilized
two recombination operators including Partially Matched
Crossover (PMX) [22] and inversion which maintain validity
of the variable permutations. PMX breaks selected parents
into three sections by choosing two random positions. Then,
two children are created by combining the sections from both
parents in such a way that no previously used index is repeated
inside the variable ordering. Applying inversion, a single parent
is divided into three sections similarly to PMX. Finally, the
order of variable indices in each section is inverted to produce
a child.

The created children are also slightly changed by use of
three mutation operators which are applied based on given
probabilities. One mutation operator exchanges the contents of
two randomly selected variable indices. The second mutation

y1 y2

x2

x4

x1 x1

x3

1

#nodes: 6
FO: 1
CE: 1
NL: 2

L: 4

(a) Initial (R: 12, S: 28)

y1 y2

x3

x2

x1

x4

x3

x2

x4

1

#nodes: 8
FO: 0
CE: 1
NL: 2

L: 3

(b) Optimized (R: 11, S: 27)

Fig. 3. Optimization example for MOGA

scheme performs the previous operator on the same child for
two times. In the third employed mutation operator a random
position in the child is selected and its value is exchanged for
an adjacent index.

D. Example
Fig. 3 shows an example with two BDDs both representing

a 4-variable 2-output Boolean function. The left BDD has the
initial ordering, whereas the second BDD has the ordering
obtained by MOGA. The number of required RRAMs for
computing BDD levels (5 · NL + CE) is equal before and
after optimization since both BDDs have a maximum number
of two nodes and one ingoing complemented edge over all
levels. However, there is a nonconsecutive fanout of node x3

targeting x1 before optimization requiring an extra RRAM to
maintain the intermediate result. In the optimized BDD the
inputs of all of the nodes come from the consecutive levels
or the constant 1 which has reduced the number of required
RRAMs by 1. The number of computational steps has been also
reduced after optimization since one level has been released
from complemented edges.

As can be seen, the numbers of RRAMs and steps decrease
although the number of BDD nodes increases. The effect of
BDD optimization sounds to be too small for the example
function by reducing each one of the cost metrics only by
one. Nevertheless, this reduction can be much more visible for
larger functions due to the higher possibility of finding BDDs
with smaller number of nonconsecutive fanouts, complemented
edges and level sizes caused by larger search space.

IV. EXPERIMENTAL RESULTS
The results of experiments on 25 benchmark functions taken

from LGSynth91 [24] are presented in this section. The number
of input variables of the selected functions are in range from
7 to 135. We have used the CUDD package [23] for BDD
representation and assessment of the optimization results. For
each benchmark function, MOGA has been run 10 times with
a termination criterion of 500 generations. The population is
three times as large as the number of inputs of each function
with a maximum allowed size of 120. The probabilities for
PMX and inversion are set to 0.98 and 0.01 respectively. The
mutation probability is distributed identically over the three
operators with a value of 1/n, where n is the number of input
variables.

Table II compares the results of MOGA with the BDDs
generated by the initial variable orderings given by CUDD.

TABLE II. COMPARISON OF OPTIMIZATION RESULTS WITH INITIALLY ORDERED BDDS BY CUDD [23]

Function N MOGA CUDD [23]
FO CE NL L R S FO CE NL L R S

5xp1 7 12 5 8 7 57 49 22 7 21 7 134 49
alu4 14 182 20 99 9 697 93 208 0 282 10 1618 94
apex1 45 278 41 164 12 1139 282 2885 477 1705 14 11887 284
apex2 39 45 0 24 1 165 235 2490 0 1910 13 12040 247
apex4 9 210 138 336 9 2028 63 40 175 405 9 2240 63
apex5 117 147 0 78 70 537 772 707 363 486 79 3500 781
apex6 135 49 0 26 4 179 814 281 151 284 75 1852 885
apex7 49 30 3 17 34 118 328 776 64 440 37 3040 331
b9 41 14 5 9 21 64 267 29 5 21 29 139 275
clip 9 18 5 14 9 93 63 16 11 69 9 372 63
cm150a 21 8 0 4 1 28 127 7650 0 65280 1 334050 127
cm162a 14 8 4 6 7 42 91 14 8 12 11 82 95
cm163a 16 6 3 4 16 29 112 9 8 12 14 77 110
cordic 23 5 0 4 2 25 140 5 0 4 19 25 157
misex1 8 19 0 12 2 79 50 4 5 11 8 64 56
misex3 14 101 0 67 7 436 91 117 0 192 2 1077 86
parity 16 0 1 1 16 6 112 0 1 1 16 6 112
seq 41 234 0 193 4 1199 250 10635 4801 18311 9 106991 255
t481 16 2 0 2 4 12 100 2 2 2 9 14 105
table5 17 162 0 101 7 667 109 435 0 450 8 2685 110
too large 38 54 0 32 1 214 229 800 349 708 11 4689 239
x1 51 45 0 28 27 185 333 119 2 91 41 576 347
x2 10 7 3 7 5 45 65 4 8 19 6 107 66
x3 135 61 0 32 3 221 813 563 159 355 64 2497 874
x4 94 47 0 26 9 177 573 190 67 109 54 802 618∑

1744 228 1294 287 8442 6161 28001 6663 91180 555 490564 6429

N : no. of input variables, FO: maximum no. of nonconsecutive fanouts in any BDD level, CE: no. of ingoing complemented edges in the level determining the number of RRAMs,
NL: no. of nodes in the level determining the number of RRAMs, L: no. of BDD levels with ingoing complemented edges, R: no. of RRAMs, S: no. of computational steps

Values given in Table II are the best found trade-off between
objective functions chosen manually from the final populations
of all 10 runs. The results in Table II show that BDDs found
by MOGA require smaller number of RRAMs in comparison
with the initially ordered BDDs. More precisely, the sum of
RRAM counts by CUDD for the whole benchmark set is
more than 58 times the corresponding amount of the optimized
BDDs. The sum of the number of required steps to evaluate
BDDs is also lowered by 4.16%. It should be noted that
in parallel implementation the number of steps is close to
the lowest possible value and does not depend on the BDD
characteristics too much. As shown in Table I, the only cost
metric that can be reduced by optimization is the number of
levels with complemented edges. Therefore, the number of steps
are not highly affected by optimization. A similar situation
occurs in BDD optimization for serial implementation where
the number of required RRAMs can be quite constant for a
given function. Nonetheless, the optimization results show a
considerable reduction in the values of objective functions.

MOGA is able to handle objective priorities when a fair
increase in the area or delay can be tolerated for achieving
higher minimization with respect to one criterion. Results
of optimization with priority to the number of RRAMs and
computational steps are demonstrated in Table III. As shown in
the Table III, MOGA with priority to the number of RRAMs
has obtained the smallest sum of RRAMs and as expected
the smallest number of steps are provided by setting higher
priority to steps. In both cases, a decrease in the objective
function of higher importance has led to an increase in the
value of the other objective. As discussed before, the number
of required steps for evaluation cannot be dramatically lowered
by optimization. This explains why MOGA with priority to the
number of steps has resulted in higher overhead for a small
reduction in S while a greater reduction in R has not increased
the number of steps considerably.

In Table IV, our optimization results are compared with

TABLE III. OPTIMIZATION RESULTS WITH PRIORITY TO THE NUMBER
OF RRAMS OR STEPS

Function Priority to R Priority to S
R S R S

5xp1 57 49 65 42
alu4 590 96 1014 77
apex1 1082 283 3040 277
apex2 172 237 188 235
apex4 2028 63 2224 62
apex5 509 775 591 771
apex6 160 815 220 813
apex7 102 332 190 328
b9 59 269 77 267
clip 93 63 93 63
cm150a 28 127 28 127
cm162a 32 93 38 89
cm163a 29 112 31 108
cordic 21 140 26 140
misex1 59 52 79 50
misex3 436 91 681 86
parity 6 112 6 112
seq 1129 251 1207 248
t481 12 100 16 100
table5 637 113 1346 107
too large 164 232 182 229
x1 172 339 186 333
x2 42 67 45 65
x3 161 815 215 813
x4 177 573 209 573∑

7957 6199 11997 6115

R: no. of RRAMs, S: no. of computational steps

results given in [9]. The number of computational steps in
results by Chakraborti et al. [9] are calculated by using a
different function from ours given in Table I. In [9], the
maximum number of complemented edges in any BDD level
is added to the basic value relating to the number of input
variables of the Boolean function. As explained before, we
have considered one extra RRAM for any complemented edge
in the diagram. Thus, for any level containing complemented
edges one extra step is sufficient to execute all the required
IMP operations simultaneously.

TABLE IV. COMPARISON OF RESULTS WITH CHAKRABORTI ET AL. [9]

Function MOGA Chakraborti et al. [9]
R S R S

5xp1 57 49 84 73
alu4 697 93 642 334
apex1 1139 282 1626 705
apex2 165 235 122 237
apex4 2028 63 2073 447
apex5 537 772 806 888
apex6 179 814 770 1169
apex7 118 328 290 437
b9 64 267 125 298
clip 93 63 120 89
cm150a 28 127 56 127
cm162a 42 91 46 102
cm163a 29 112 42 116
cordic 25 140 32 149
misex1 79 50 83 69
misex3 436 91 444 185
parity 6 112 23 113
seq 1199 250 1566 692
t481 12 100 26 107
table5 667 109 580 168
too large 214 229 282 232
x1 185 333 230 398
x2 45 65 60 80
x3 221 813 770 1169
x4 177 573 401 642∑

8442 6161 11299 9026

R: no. of RRAMs, S: no. of computational steps

A comparison of Table IV and Table II reveals that the
results given in [9] do not represent the initially ordered BDDs.
Actually, a kind of random optimization is done which tries
a number of randomly created variable orderings and keeps
the best found BDDs for each benchmark function. MOGA
has achieved better performance in both objective functions.
Regardless the difference in the number of steps which is
slightly affected by the different equations for S, MOGA has
also decreased the total number of required RRAMs. The sums
of the number of RRAMs and steps required to evaluate BDDs
of all benchmark function show a reduction of 25.28% and
31.74%, respectively.

V. CONCLUSION
RRAM based design has gained high interest for its possible

applications in various domains. In logic circuit design using
resistive switches, it is aimed to reduce the required number of
RRAMs and computational steps. Especially the latter one can
be more costly for larger circuits while using higher number
of RRAMs does not necessarily cause high area overhead
due to their tiny dimensions. The presented approach employs
BDDs for RRAM based logic circuit design and performs multi-
objective optimization by a genetic algorithm in order to attain
smaller and faster circuits. The proposed genetic algorithm is
capable of considering user preference to any of the objectives
that might be of interest in some applications. Performance
evaluation and comparison of experimental results reveal that
our genetic algorithm fairly lowers both criteria and finds a
good trade-off between them.

ACKNOWLEDGMENT
This research was supported by the German Research

Foundation (DFG) (DR 287/23-1) within a Reinhart Koselleck
project, the University of Bremen’s graduate school SyDe,
funded by the German Excellence Initiative, and H2020-ERC-
2014-ADG 669354 CyberCare.

REFERENCES
[1] R. Ebendt, G. Fey, and R. Drechsler, Advanced BDD Optimization.

Springer, 2005.
[2] H.-S. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T.

Chen, and M. Tsai, “Metal-oxide RRAM,” Proc. IEEE, vol. 100, no. 6,
pp. 1951–1970, 2012.

[3] L. Chua, “Resistance switching memories are memristors,” Applied
Physics A, vol. 102, no. 4, pp. 765–783, 2011.

[4] ——, “Memristor-The missing circuit element,” IEEE Trans. Circuit
Theory, vol. 18, no. 5, pp. 507–519, 1971.

[5] D. B. Strukov, D. R. Stewart, J. Borghetti, X. Li, M. Pickett, G. M.
Ribeiro, W. Robinett, G. Snider, J. P. Strachan, W. Wu, Q. Xia, J. J.
Yang, and R. S. Williams, “Hybrid CMOS/memristor circuits,” in ISCAS,
2010, pp. 1967–1970.

[6] H. Owlia, P. Keshavarzi, and A. Rezai, “A novel digital logic im-
plementation approach on nanocrossbar arrays using memristor-based
multiplexers,” Microelectronics Journal, vol. 45, no. 6, pp. 597–603,
2014.

[7] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[8] S. Kvatinsky, G. Satat, N. Wald, E. Friedman, A. Kolodny, and U. Weiser,
“Memristor-based material implication (IMPLY) logic: Design principles
and methodologies,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2054–
2066, 2014.

[9] S. Chakraborti, P. Chowdhary, K. Datta, and I. Sengupta, “BDD based
synthesis of Boolean functions using memristors,” in IDT, 2014, pp.
136–141.

[10] E. Lehtonen, J. Poikonen, and M. Laiho, “Implication logic synthesis
methods for memristors,” in ISCAS, 2012, pp. 2441–2444.

[11] J. Bürger, C. Teuscher, and M. Perkowski, “Digital logic synthesis for
memristors,” in Reed-Muller 2013, 2013.

[12] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast
logic synthesis for RRAM-based in-memory computing using majority-
inverter graphs,” in DATE, 2016, pp. 948–953.

[13] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs
is NP-complete,” IEEE Trans. Comput., vol. 45, no. 9, pp. 993–1002,
1996.

[14] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in ICCAD, 1993, pp. 42–47.

[15] B. Bollig, M. Löbbing, and I. Wegener, “Simulated annealing to improve
variable orderings for OBDDs,” in International Workshop on Logic
Synth, 1995.

[16] R. Drechsler, B. Becker, and N. Göckel, “Genetic algorithm for variable
ordering of OBDDs,” Proc. IEE Computers and Digital Techniques, vol.
143, no. 6, pp. 364–368, 1996.

[17] G. Fey and R. Drechsler, “Minimizing the number of paths in BDDs:
Theory and algorithm,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 25, no. 1, pp. 4–11, 2006.

[18] M. Hilgemeier, N. Drechsler, and R. Drechsler, “Minimizing the number
of one-paths in BDDs by an evolutionary algorithm,” in CEC, 2003, pp.
1724–1731.

[19] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective BDD
optimization with evolutionary algorithms,” in GECCO, 2015, pp. 751–
758.

[20] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in DAC, 1990, pp. 40–45.

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[22] I. Oliver, D. Smith, and J. Holland, “Study of permutation crossover
operators on the traveling salesman problem,” in Proc. the second
International Conference on Genetic Algorithms, 1987, pp. 224–230.

[23] F. Somenzi, “CUDD: CU Decision Diagram package release 2.5.0.”
University of Colorado at Boulder, 2012.

[24] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0.” Microelectronics Center of North Carolina (MCNC),
1991.

