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ABSTRACT
Latest quantum technologies promise realization of extremely
large circuits, whereas, reversible logic synthesis, the key
automation step for quantum computing, suffers from scala-
bility bottleneck. Scalability can be achieved with Decision
Diagram (DD)-based synthesis at the cost of significant an-
cilla/garbage lines overhead. In this paper, we present a novel
hierarchical reversible logic synthesis, where DD-based syn-
thesis is invoked within an And-Inverter Graph (AIG)-based
synthesis wrapper, balancing scalability and performance.

The resulting tool can synthesize much larger functions
(512-inputs), provides excellent flexibility, and restricts an-
cilla overhead. On average, line-count and gate-count reduc-
tions of 94% and 35% respectively, are achieved, compared
to state-of-the-art.

1. INTRODUCTION
Reversible logic synthesis is fast emerging as major re-

search direction for enabling the realization and deployment
of future technologies such as quantum computing. In con-
trast to the conventional logic synthesis that utilizes the
universal operator-set of irreversible logic gate, e.g., NAND
gate, quantum computing mandates that the underlying log-
ical operations are inherently reversible [21]. As a result,
logical primitives with reversible form, e.g., NOT, CNOT,
and Toffoli [4] are used for realizing a quantum circuit. The
process of mapping a given Boolean multi-output function
f : {0, 1}n → {0, 1}m to a set of reversible logic gates is
known as reversible logic synthesis. Reversible logic syn-
thesis begins from a given Boolean function, which can be
irreversible. The first step, in that case, is to convert it to a
reversible Boolean function which possibly requires additional
lines. When additional constant-initialized input Boolean
variables are needed for constructing the output function,
those are referred to as ancilla inputs. If an ancilla input
is not recovered to its initial value after the computation
is done, it is referred to as a garbage output. For practical
implementation purposes, it is desirable to keep the ancilla
count as small as possible. Determining the minimum num-
ber of required ancilla bits is coNP-complete [29]. Reversible
logic synthesis approaches that guarantee a minimum num-
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ber of ancilla lines are called ancilla-free. Though being
far from practical day-to-day usage, quantum computing is
making rapid strides with recent results reporting quantum
gate realizations using silicon [30] and novel architectures
allowing scalability to millions of physical qubits [13]. A
range of quantum algorithms are known to have polynomial,
superpolynomial, or exponential speed-up over classical al-
gorithms.1 A key constituent of these algorithms are large
Boolean functions, such as, modular exponentiation function
in Shor’s factoring algorithm [25]. Automatic synthesis of
such large Boolean functions is a major, unsolved research
problem. This is only partially addressed by some dedicated,
circuit-specific synthesis flows [14, 10].

1.1 Reversible Logic Synthesis: Structural or
Functional

In the last few years, with the emergence of novel tech-
nology devices, logic synthesis also made a prominent come-
back from industry-standard tools to an important research
problem. In particular, researchers have tried to closely
match the intermediate representation (IR) of a logic func-
tion with the elementary gates that are expressed in a
given technology. State-of-the-art examples of these are
Or/And-inverter graphs [19], Majority-inverter graphs [3],
Bi-conditional binary decision diagrams [2, 9], and threshold
logic networks [33]. Reversible logic synthesis is no exception,
where, in addition to the adaptation of the conventional
logic synthesis approaches, novel IRs such as QMDDs [18],
QuiDDs [31], and RbDDs [1] are proposed.

Based on the IR, we draw the attention to another classifi-
cation of the logic synthesis approaches, which we refer to as
functional and structural approach.
• Functional logic synthesis approach: Functional logic

synthesis is enabled if the IR is used to explicitly express
the logic function. Examples for IRs are Boolean truth
tables or binary decision diagrams (BDDs [6]).
• Structural logic synthesis approach: Structural logic

synthesis is enabled if the IR is used to represent the
structure of the circuit, e.g., using And-inverter graphs
(AIGs). Such an IR provides the capability to perform
structural manipulation during the synthesis, e.g., al-
gebraic factorization. However, to evaluate the overall
function value, even for a sub-part of the IR, requires
exhaustive enumeration of all the input values.

Both types of logic synthesis approaches come with advan-
tages and drawbacks. Only structural logic synthesis is
scalable to very large functions, however, only functional
logic synthesis can guarantee optimality w.r.t. some cost
metric. In order to take the best of both worlds, one can

1http://math.nist.gov/quantum/zoo



combine both strategies into one hybrid synthesis approach.
The overall approach is structural but employs functional
logic synthesis for substructures of the IR.

1.2 Related Work
During the last decade, a significant amount of research

has been done in the field of reversible logic synthesis. These
works can be broadly classified into two classes. First, there
are optimal/pseudo-optimal approaches based on techniques
such as satisfiability solving [12], reachability analysis, and
exhaustive enumeration [11]. Second, there are a suite of
heuristic algorithms, which are inspired from the conventional
logic synthesis techniques. For this paper, we concentrate
on the latter class of algorithms and kindly refer inquisitive
reader to the excellent survey available at [23].

The heuristic algorithms either adopt structural (e.g., using
BDDs [32, 15] when regarded as a MUX circuit) or functional
synthesis approach (e.g., based on truth tables [17] or also
on BDDs [28, 27] when regarded as symbolic function rep-
resentation). In order to guarantee minimum ancilla count
for a reversible circuit implementation, it is necessary to
have a full functional view of the Boolean function. This is
only accessible in functional synthesis approaches. In fact,
since structural synthesis approaches need to store inter-
mediate results on temporary lines, today’s state-of-the-art
structural synthesis approaches add a tremendous amount
of additional lines [32, 15]—magnitudes larger than the the-
oretical upper bound [29]. Despite having the possibility
to perform functional evaluation and reduce ancilla count,
the DD-based reversible logic synthesis methods, initially,
adopted a node-wise structural synthesis approach. For each
node, a corresponding reversible circuit is constructed and
stitched with the outputs of the descendant nodes to derive
the entire circuit. Recently, it was shown that by utilizing
a fast symbolic simulation [27], ancilla-free reversible logic
synthesis for large Boolean functions is possible. However, it
was also noted in [27], that for complex functions with large
number of inputs, the runtime increases exponentially.

1.3 Motivation and Contribution
So far, to the best of our knowledge, there is no reversible

logic synthesis that merged functional and structural tech-
niques in the same synthesis flow, whereas, this is not un-
common in conventional logic synthesis [8]. A recent work
outlining a mixed, hierarchical reversible logic synthesis [16]
proposes the global synthesis to be driven by Reed-Muller
synthesis and local synthesis with decision diagrams. How-
ever, efficient Reed-Muller synthesis is achieved by DD-based
heuristics [20], which, in effect, limits the scalability. Indeed,
the hierarchical approach outlined in [16] does not report
results for benchmarks larger than 19 inputs.

This work presents a new hybrid logic synthesis approach
for reversible circuits. The structural IR to represent the
overall function are AIGs which are known to be more scal-
able compared to BDDs. During synthesis, sub-circuits are
extracted from the AIG that are applicable to ancilla-free
synthesis approaches thereby locally guaranteeing circuits
with the minimum number of lines. The major challenges as-
sociated with this approach are i) enabling a user-controllable
threshold for the decision of structural and functional syn-
thesis flows; ii) performing fast, ancilla-free synthesis by
transforming the representation from AIG to DD; and iii)
stitching the sub-circuits together without introducing any
redundancy. We successfully addressed all these challenges
as described in detail in Section 2.

Our proposal is inspired from technology mapping methods
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Figure 2: Example application of Algorithm C, steps
2–3

used in conventional logic synthesis flows [22, 8, 7]. Experi-
mental evaluations show that our proposed approach outper-
forms the state-of-the-art reversible logic synthesis flows in
several aspects:

1. Quality of the result: Experiments show that gate count
is reduced in most of the cases and line count can be
reduced by more than three orders of magnitude.

2. Flexibility: Due to the canonicity property of BDDs,
hybrid BDD is less flexible as it allows fewer structural
choices. Since AIGs are not canonical, they allow for a
higher flexibility, e.g., due to the possibility of rewriting.
This in turn allows for a variety of different synthesis
results enabling design space exploration in the design
flow.

3. Scalability: AIGs are more scalable than BDDs and
allow the application to functions that couldn’t be
synthesized before. Besides that, algorithmic specific
parameters in our approach allow to trade-off quality
of the synthesis result with run-time.

2. ALGORITHM

2.1 General Idea
The main idea of our proposed hybrid synthesis approach

is to represent the function as a circuit logic representation,
in our case as AND-inverter graph. Such representations
are scalable, particularly compared to BDDs. The algorithm
partitions the circuit into smaller sub-circuits that are as large
as possible in order to be applied for ancilla-free reversible
logic synthesis. This allows to keep the overall number of
additional lines small. Recent advances in symbolic ancilla-
free synthesis approaches further allow to increase the size of
such sub-circuits. Since reversible functions have the same
number of input variables and output variables, these sub-
circuit should be determined such that they ideally have the
same number of inputs and outputs as well.



In our approach, we first partition the circuit into fanout-
free regions (FFR) of bounded input width and then merge
such fanout-free regions into so-called synthesizable regions.
An FFR (r, L) rooted in a gate r is a connected sub-circuit
with leaves L such that all internal gates g /∈ L ∪ {r} only
fan out to one other gate, which must by definition also be
in the sub-circuit. An FFR has only one output variable and
therefore is not ideal for reversible logic synthesis. Merging
several FFRs into a synthesizable region increases the number
of outputs. When merging two or more FFRs, common input
variables are shared.

This two step-approach is helpful in controlling the size of
the resulting sub-circuits and ensuring to keep the number
of internal vertices with fan-out small. Vertices with fan-out
need to be preserved in a reversible circuit by adding lines,
as reversible circuits prohibit fan-out.

2.2 Implementation
This section first gives a high-level description of the al-

gorithm and then explains each step in detail along with
a running example based on Fig. 1. It shows an AIG that
represents the ISCAS function ‘c17 ’. Filled circles represent
AND gates and dashed lines are complemented edges.

Algorithm C (Hybrid circuit-based synthesis). This is a
high-level description of our algorithm that takes a circuit C
(in our case represented as an AIG) and returns a reversible
circuit R which realizes an embedding of the function repre-
sented by C. One threshold parameter t controls the size of
the sub-circuits and can be used to trade-off the quality of
the resulting circuit with the overall run-time.

C1. [Add inputs.] For each input in C add a circuit line to
R.

C2. [Compute FFRs.] Compute fanout-free regions

(r1, L1), . . . , (r`, L`)

in C such that ri ≺ ri+1 for all 1 ≤ i < ` and |Li| ≤ t
2

for all 1 ≤ i ≤ `. (‘≺’ denotes topological order).

C3. [Merge FFRs.] Merge successive fanout-free regions into
synthesizable regions

(I1, O1, P1), . . . , (Ik, Ok, Pk)

such that |Ii|+ |Oi| ≤ t for all 1 ≤ i ≤ k.

C4. [Synthesis.] For i = 1, . . . , k, synthesize the synthesiz-
able region (Ii, Oi, Pi) and append it to the reversible
circuit R.

C5. [Add outputs.] Add outputs of C to R.

In the following, each step of Algorithm C is described in
more detail.

C1. Add inputs
In the initialization of the algorithm we add one circuit line
to R for each primary input in C. A primary input in C is
an AIG node. In general, Algorithm C keeps track of which
AIG node v is currently represented by which circuit line in
R by regularly updating a map LINE[v]. Initially LINE maps
each primary input to the corresponding added circuit line.

Example 1. This and the following examples demonstrate
the application of Algorithm C to the AIG in Fig. 1 with t
set to 6. After step C1, the reversible circuit R consists of 5
empty circuit lines and we have

LINE[x1] = 0, LINE[x2] = 1, LINE[x3] = 2,
LINE[x4] = 3, LINE[x5] = 4.

C2. Compute FFRs
In many logic synthesis applications one is typically inter-
ested in the maximum FFRs, which can be computed using
a depth-first traversal that stops at nodes that are either
primary inputs or have more than one fanout. However,
in our application we are interested in FFRs that have a
bounded number of leaves. Therefore, the FFR must be com-
puted using a breadth-first traversal which extends the leaf
boundary in every step and stops as soon the given threshold
is reached.

Step 2 also requires that FFRs are ordered such that their
roots are in topological order. This is achieved by computing
FFRs starting from the primary outputs. For this purpose,
we keep track of a root boundary R, which is initially a
sequence of all primary outputs in topological order. In each
step we take and remove the largest element r of R, compute
a bounded FFR (r, L), and then insert all elements of L into
R such that its elements remain in topological order. This
procedure ensures that all FFRs are computed in reverse
topological order.

Example 2. Fig. 2(a) shows all FFRs of the circuit in
Fig. 1:

(v2, {x2, x3, x4}), (v3, {x2, v2}),
(v4, {x1, x3, v3}), (v6, {x5, v2, v3})

Their roots are in topological order, i.e., v2 ≺ v3 ≺ v4 ≺ v6.

C3. Merge FFRs
Each FFR (r, L) represents a single-output Boolean function
over |L| variables. Synthesizing f as a reversible function
requires |L|+ 1 lines, unless f is balanced [29], which gets
less likely when |L| increases. In order to save additional
lines during synthesis we are interested in sub-circuits that
have more than one output. For this purpose, we merge
successive FFRs into synthesizable regions (I,O, P ) with
inputs I and outputs O. Since reversible circuits prohibit
fanout, the circuit inputs cannot be accessed after being
updated by a gate. Some inputs of I may be included in
other synthesizable regions and therefore they need to be
explicitly preserved by exposing them to the outputs. These
inputs are stored in P ⊆ I. One can use reference counting
in order to track which of the inputs need to be preserved.

The function that is represented by the synthesizable region
(I,O, P ) has |I| inputs and |O|+ |P | outputs. A reversible
circuit that realizes this function requires at most |I|+ |O|
variables. ESOP-based synthesis approaches such as [24]
imply this bound, since they require one line per input and
one line per output, also all inputs are preserved. The sum
of inputs I and outputs O is used to control the size of the
resulting synthesizable regions using the threshold t.

Example 3. Remember that t is set to 6 in this example.
FFRs are merged in successive order, i.e., first one tries to
merge (v2, {x2, x3, x4}) and (v3, {x2, v2}) which results in a
synthesizable region

(I = {x2, x3, x4}, O = {v2, v3}, P = {x3}).

The input x3 is part of the FFR that is rooted in v4 and
therefore needs to be preserved. Notice that also v2 is still
required to realize the FFR that is rooted in v6 and therefore
needs to be added to the outputs. With a size of 6 this
synthesizable region respects the threshold, however, merging
the next FFR would exceed it. For the same reason the
remaining two FFRs rooted in v4 and v6 cannot be merged
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Figure 3: Example application of Algorithm C, step 4

and are directly taken as synthesizable regions

({x1, x3, v3}, {v4}, {v3}) and ({x5, v2, v3}, {v6}, {}).

As v3 is used as input in both these synthesizable regions, it
needs to be preserved by the first one.

C4. Synthesis
Each synthesizable region represents an irreversible function
f to be synthesized using a functional synthesis approach.
First, the synthesizable region is translated into a BDD
using symbolic simulation. Symbolic simulation is key in
every hybrid synthesis approach to translate structural parts
into functional representations. Based on this BDD the
minimal number of additional inputs can be computed using
the technique proposed in [29]. This technique requires the
sum-of-product representation of f as input which may be
costly to generate from the BDD in memory. We adopted
this algorithm for embedding the BDD and modified it such
that it works directly on the BDD representation. The result
is a BDD that represents the characteristic function of a
reversible function that embeds f . This BDD can be used to
perform synthesis using an ancilla-free synthesis algorithm
such as proposed in [27]. If the synthesizable region is small
enough, the truth table of f can be computed and any truth
table based synthesis approach can be applied to obtain the
reversible sub-circuit. The hierarchical technique also opens
up the possibility to execute multiple, parallel runs for the
synthesizable regions and selecting the one with the best
performance.

Example 4. Fig. 3 shows how a realization is obtained
for the first synthesizable region (Fig. 3(a)). Symbolic sim-
ulation leads to the BDD shown in Fig. 3(b). The output
ẋ3 corresponds to the preserved input x3. From this BDD
the minimal number of additional lines is determined to be
1 using the algorithm from [29]. Embedding then leads to
a BDD depicted in Fig. 3(c) which represents a (partially
specified) reversible function that embeds the function realized
by the synthesizable region. Its additional constant input is
c and the additional garbage output is g. Using a symbolic
ancilla-free synthesis approach such as [27] leads to a circuit
as depicted in Fig. 3(d).

We perform the following optimization to reduce run-time.
Whenever I = P in the synthesizable region, i.e., all inputs
must be preserved. In this case, the number of lines in the
reversible circuit must be at least |I|+ |O| and we can apply
ESOP-based reversible logic synthesis [24].

After the reversible sub-circuit has been determined it
needs to be appended to the overall reversible circuit R. For
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each constant line in the sub-circuit a new line is added. For
the remaining lines, the map LINE can be used to arrange the
gates. Afterwards, the line mapping is updated according to
the new outputs. Garbage outputs can be used to remove
previous line mappings.

Example 5. In the running example, a sixth line with
index 5 is added to R for the constant input. After appending
the sub-circuit in Fig. 3(d) to R, the line mapping is updated:

LINE[v3] = 5, LINE[v2] = 3

Note that LINE[x3] remains unchanged and x2 is removed
from the mapping.

C5. Add outputs
An output in the AIG is a pointer to a node v which may
be complemented. The line mapping LINE[v] then reveals
the circuit line of that output. In case the output is com-
plemented, a NOT gate is appended to that line. It may be
possible that several outputs point to the same node. How-
ever, in reversible circuits no fanout is allowed and therefore
each output needs its own line. For this purpose we store for
each first considered output the line it maps to. If another
output points to the same node, an additional line is added
to the reversible circuit and the value of the output is copied
using a CNOT gate. If the polarities of the outputs differ, a
CNOT with a negative control line is added instead.



Example 6. Fig. 4 displays all possible scenarios of how
AIG outputs are handled in the reversible circuit.

The overall reversible circuit for the AIG in Fig. 1 with a
threshold t = 6 is depicted in Fig. 5.

3. EXPERIMENTAL EVALUATION
We have implemented the proposed approach in C++ on

top of RevKit [26] in the command cbs.2 We have performed
two experiments: (i) a comparison to the state-of-the-art and
an evaluation of the trade-off parameter and (ii) an evaluation
of the effect of AIG optimization to the final synthesis results.
All experiments have been carried out on an 2.6 GHz Intel
Xeon CPU with 128 GB RAM running Linux 3.13.

3.1 Comparison and Trade-off
The state-of-the-art structural synthesis approach that is

available through open source software is the hierarchical
BDD based synthesis [32] and therefore we have used it as
baseline for comparison to our proposed approach. We have
not applied any post-synthesis optimization approaches as
they can be applied to both approaches. As benchmark set
we used the ISCAS benchmarks. In order to apply the BDD
based synthesis approach to these benchmarks, we generate
the BDDs using symbolic simulation on the AIG without
first translating them into a sum-of-product representation.
This is an extension compared to the previously proposed
approach.

Table 1 list the results of the experimental evaluation. It
shows the benchmark with its number of inputs and outputs
(I/O). For the hierarchical BDD based approach and our
proposed approach with thresholds t ∈ {9, 11, 13, 15} the
table lists number of gates (d), number of lines (l), and
the run-time. We compute the improvement in additional
lines and gate count compared to the BDD based synthesis
approach and give the average over all improvements in the
last row of the table.

First it can be noticed that the number of additional lines
can be reduced tremendously, on average the improvement
is between 94% and 96% depending on the threshold. The
number of gates is not necessarily reduced and increases
when the threshold is set larger. This is in agreement with
many previous observations in reversible logic and quantum
computation. Note that, circuit implementation with low
ancilla count is of significant importance due to the direct
implication on the number of qubits, and ancilla-free synthe-
sis with truth table or BDD does not scale for functions large
variable, as discussed earlier. Also the run-times increase
when the threshold is increased, however, for a small t the
run-times are comparable to the BDD based synthesis. For
the benchmark ‘c6288 ’, a multiplier, the BDD cannot be
constructed and hence the BDD based synthesis approach
cannot be applied. However, using a threshold of 9 our pro-
posed approach can find a solution within 5 seconds. The
effect of scalability is more prominent, in the next set of
experiments with large combinational benchmarks.

The table shows no quantum cost information as there
are several technologies which are based on different assump-
tions. Often, additional lines have a positive effect on the
technology dependent quantum costs since functionality can
be implemented using gates with a smaller number of control
lines. As such the generated circuits can be considered as
starting point for quantum circuit synthesis in which the
reversible gates are decomposed into smaller ones.

2http://github.com/msoeken/cirkit

3.2 Effect of AIG Optimization
Since our proposed hybrid approach works structurally on

the AIG representation, different AIGs for the same func-
tion lead to different synthesis results. There exists a vast
amount of optimization approaches for AIGs, which can be
directly used to obtain alternative synthesis results. This
section describes an experiment that evaluates the effect of
optimization. We have applied our proposed approach to
the arithmetic instances of the EPFL combinational bench-
mark suite.3 These are significantly larger than the ISCAS
benchmarks and for all of them the BDD construction using
symbolic simulation on the input AIG could not be completed
within the provided computing and memory resources.

The results are listed in Table 2. We applied the hybrid
synthesis approach with t = 10 to three different AIGs: (i) the
original AIG provided from the benchmark suite, (ii) the
optimized AIG using ABC’s if -x -g command [5], and
(iii) the optimized AIG using ABC’s dc2 command. The
first command priotorizes depth and the second command
priotorizes size in the optimization. The table lists size and
depth of the corresponding AIG, number of gates (d) and
number of lines (l) of the reversible circuit, as well as run-time
required for synthesis.

The experiment shows that the AIG representation can
have a significant impact on the outcome of the synthesis
result, e.g., ‘bar ’ and ‘div ’ in case of the dc2 optimization.
Optimization may not necessarily lead to better results, as
for example shown by many instances of the if -x -g op-
timization. Hence, tailored AIG optimization approaches
aiming for a better synthesis result are of great interest.

4. CONCLUSIONS
Reversible logic synthesis research have made significant

progress over the last few years, however, it still suffers
from scalability. Conventional logic synthesis tools adopt
a structural approach towards synthesis, which scales bet-
ter. Structural model of synthesis in reversible domain leads
to high number of ancilla lines, which is not desirable for
practical quantum circuits. In this paper, we propose a
merger of structural and functional logic synthesis to address
both concerns. The proposed hierarchical logic synthesis
resorts to an AIG structure globally, with local calls to func-
tional synthesis flows. The performance of this hierarchical
flow conclusively demonstrates a significant improvement in
scalability, tremendous reduction in ancilla overhead and
flexibility (via threshold) to control the ancilla vs gate count
performance trade-off. As a bonus, we observe interesting
correlations between the AIG optimizations and final cir-
cuit performance figures. This can lead to a detailed study
in future. Further future works include, multiple, parallel
synthesis runs for the local optimizations, including known
ancilla-free methods like transformation-based, BDD-based
and optimal synthesis methods.
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