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Abstract—This paper presents a rule based approach to
optimize the quantum cost of reversible circuits using circuit
rewriting rules that handle positive and negative controls. Since
incremental optimization cannot guarantee optimality, we con-
sider the application of simulated annealing to find further sub-
circuits that could be replaced with smaller ones.

Experimental evaluations show that simulated annealing not
only can significantly improve the quality of reversible circuits
but also is more efficient than a comparable greedy approach.
Using the rewriting rules combined with the proposed method
quantum cost reductions by up to 80% can be achieved.

I. INTRODUCTION

Synthesis describes techniques of finding a reversible circuit
that realizes a given reversible function. Typically, synthesis
approaches are not aware of the technology in which the
circuit is applied. In order to optimize synthesis results with
respect to some target technology, post-synthesis optimization
approaches are used to reduce the circuits with respect to
a given cost, e.g., transistor costs in CMOS architectures or
quantum costs in quantum computing architectures.

Due to the inherent complexity of reversible circuits, usually
local optimization strategies are implemented, i.e., sub-circuits
are analyzed for possible reductions. The most employed
optimization approaches can be categorized into rule-based
optimization and template matching.

Rule-based optimization (see, e.g., [1]–[3]) suggests a spe-
cific set of sub-circuits together with cheaper replacements.
Rule-based approaches are typically motivated based on some
synthesis approaches and exploit often reoccurring circuit
structures. The approaches are not complete, i.e., they cannot
guarantee an optimal circuit after optimization. However, the
approaches are greedy meaning that optimization is only
applied if a reduction can be achieved. Consequently, they
cannot escape local optima.

Template matching approaches (see, e.g., [4])are more pow-
erful than rule-based approaches. A template is a generic
circuit that realizes the identity function. Generic means that
one template represents a (theoretically infinite) set of identity
circuits. If a sub-circuit matches one part of an instance of
a template it can always be replaced with the inverse of
the remaining part, since they represent the same function.

Optimization with templates is also greedy, however, it is still
unknown whether template matching is complete.

In order to find suitable sub-circuits to apply a rule or
a template, moving rules [5] have been proposed that allow
gate movement without changing the function. These moving
rules change the order of gates but not the gates themselves.
Moving rules are not complete, i.e., one cannot necessary
obtain all function-preserving permutation of gates in the
circuit by repeatedly applying the moving rules. Since the
rule-based and template matching approaches are incremental
greedy algorithms, they can achieve further improvements on
synthesized circuits but cannot guarantee optimality. In fact,
these approaches can guarantee only local optimization but not
global optimization.

Recently, circuit rewriting [6] has been proposed that ex-
ploits negative control to rewriting sub-circuits while preserv-
ing the function. Circuit rewriting is based on a small set of
elementary rules which can be extended to more complicated
rules. It is conjectured that circuit rewriting is complete based
on a very small set of rules, i.e., one can rewrite a circuit into
all other circuits that represent the same functionality. Circuit
rewriting is not greedy, i.e., intermediate steps may increase
the cost. In fact, no guided approach for circuit optimization
using the rewrite rules has been proposed so far.

In this paper, we present rule based optimization approaches
using the rewrite rules from [6] instead of the moving rules [5].
Two quantum cost optimization approaches are presented. The
first method aims to reduce the cost by applying a greedy
approach, whereas the second method is based on simulated
annealing. The application of simulated annealing can attain
not only local optimum but also global optimum [7], hence it
can find further sub-circuits to be replaced with smaller ones.
The rewrite rules support this freedom by allowing a higher
flexibility in gate movement. As confirmed by an experimental
evaluation, improvements on quantum cost of up to 17% in the
first case and up to 30% in the latter case can be observed. This
clearly demonstrates that the simulated annealing approach
outperforms the greedy approach on optimizing reversible
circuits.

The remainder of the paper is structured as follows: first the
basics on reversible circuits are recaptured in Sect. II. The next978-1-4673-9140-5/15/$31.00 2015 IEEE
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Fig. 1: Reversible circuitry

section outlines the simulated annealing approach. Section IV
introduces the rewriting rules and Sect. V gives a detailed
description of the implementation of the presented approach,
and experimental results are evaluated and interpreted in
Sect. VI. The paper is concluded in Sect. VII.

II. BACKGROUND

To keep this paper self-contained, this section briefly in-
troduces the basics on reversible logic, quantum circuits, and
their cost metrics.

A. Reversible Logic
Let IB = {0, 1} denote the Boolean values. Then we refer

to Bn,m = {f | f : IBn → IBm} as the set of all Boolean
multiple-output functions with n inputs and m outputs.

Definition 1 (Reversible function): A function f ∈ Bn,m is
called reversible if f is bijective, i.e., if each input pattern
is uniquely mapped to an output pattern, and vice versa.
Otherwise, it is called irreversible. Clearly, if f is reversible,
then n = m.
Reversible functions are realized by reversible circuits that
consist of at least n lines and are constructed as cascades
of reversible gates from some gate library. The most common
gate library consists of multiple control Toffoli gates [8].

Definition 2 (Toffoli gate): Given a set of vari-
ables X = {x1, . . . , xn}, a mixed-polarity multiple-
control Toffoli (MPMCT) gate T(C, t) has control lines
C = {xj1 , xj2 , . . . , xjl} ⊂ X and a target line t ∈ X \ C.
The gate maps t 7→ t ⊕ g(xj1 , xj2 , . . . , xjl) where g is
defined as:

g : (xj1 , xj2 , · · · , xjl) 7→ (xp1

j1
∧ xp2

j2
∧ · · · ∧ xpl

jl
)

with each literal xpi

ji
is either a propositional variable x1

ji = x

or its negation x0
ji = x̄. All remaining other lines are passed

through unaltered. Multiple-control Toffoli gates (MCT) are a
subset from MPMCT gates in which the product terms in h
can only consist of positive literals.

Example 1: Figure 1(a) shows a Toffoli gate with mixed
polarity control lines, Fig. 1(b) shows a Toffoli gate with
n positive controls. The control lines are either denoted by
solid black circles to indicate positive controls, white circles
to indicate negated controls or represented by a one product
terms Boolean function g as depicted in Fig. 1(c). The target
line is denoted by ⊕. Figure 1(d) shows different Toffoli
gates in a cascade forming a reversible circuit. The annotated
values demonstrate the computation of the gate for a given
input assignment.
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Fig. 2: Mapping a 2-controlled Toffoli gate to NCV and
Clifford+T quantum gates

B. Cost Metrics

The quantum cost of a reversible or a quantum circuit
is varying with respect to the quantum library used in the
technology mapping. When using the NCV library, then the
quantum cost is called the NCV-cost while it is called T -
depth when the Clifford+T library is used. The motivation for
that cost measure originates from the fact that the T gate is
significantly larger compared to the other gates in the circuit.

The common gate library NCV and the Clifford+T gate li-
braries are composed of the elementary gate set {NOT, CNOT,
V, V†} and {NOT, CNOT, H, Z, S, S†, T, T†}, respectively. The
two libraries are universal for quantum computation, however
only the gates of the Clifford+T library can be implemented
in a fault-tolerant way.

Definition 3 (NCV-Cost): The NCV-cost is the total number
of elementary gates used in a quantum circuit.

Definition 4 (T -depth): The T -depth is the number of T -
stages in a quantum circuit where each stage consists of one
or more T or T † gates that can be performed concurrently
on separate qubits. The total number of incorporated T or T †

gates in the whole circuit is denoted by T -count.
Example 2: Consider a Toffoli gate with two control lines

as shown in Fig. 2. A functionally equivalent realization in
terms of quantum gates using the NCV library is depicted in
the second network. The NCV-cost of this circuit is 5 since
there are 5 elementary gates in the circuit. The third cascade
represent the quantum realization of a Toffoli gate using the
Clifford+T library. It has a T -count of 7 and T -depth of 3.
The reversible circuit depicted in Fig. 1(d) has an NCV-cost
of 9 and a T -depth of 3.
Based on [9], the following table summarizes the quantum
cost for MCT gates where c denotes the number of controls:

Number of controls < 2 2 3 4 ≥ 5

NCV-cost 1 5 20 50 40(c− 3)
T -depth 0 3 12 30 24(c− 3)

287



Optimization
Iterations

Circuit size

Size
Increasing

100 200 300 400

0

1000

1500

2000

2500

Local optimum

Global optimum

Fig. 3: Greedy heuristics via simulated annealing algorithm

III. SIMULATED ANNEALING

Assume that S is a solution to a given problem. Let M
be a “move” that can be performed on S. M will have an
effect on the “cost” of S. The objective of optimization is to to
repeatedly perform “moves” to S such that the cost of S is re-
duced. The greedy algorithm is a simple heuristic optimization
technique. With the problem at hand, it would only perform
moves that lower the cost. The obvious problem with such an
approach is that it can get stuck in a local optimum (see Fig. 3).
Kirkpatrick et. al. [7] suggest an optimization technique called
simulated annealing that is based on statistical mechanics.

The idea of simulated annealing is simple. Randomly select
moves (or transformations) on a given solution. Each move
will have an effect on the cost of the solution. The moves
can be cost-increasing, cost-decreasing, or cost-neutral. Cost-
decreasing moves are always accepted. Simulated annealing
uses the concept of temperature (it plays a significant role
in statistical mechanics) to deal with cost-increasing moves.
Initially the temperature is high. Cost increasing moves are
accepted with a probability that depends on the temperature.
Initially, many cost-increasing moves are accepted. As the
temperature decreases, fewer and fewer moves are accepted.
Finally, the procedure stops when the system reaches a stable
state, that is, no moves are accepted.

The process of reversible circuit optimization is well suited
for simulated annealing. Gates can be moved within the circuit.
The move may be associated with an increased cost of the
circuit. On the other hand, a gate may be moved adjacent to
an other gate that is identical. In this case both gates can be
removed since Toffoli gates are self inverse, hence the cost
will be reduced. In dealing with reversible circuits, the NCV-
cost or the T -depth may be considered as cost metric during
the simulated annealing process.

Simulated annealing has been used in the synthesis of
reversible circuits, e.g, in [10], the authors have presented
a simulated Annealing based Quine-McCluskey approach to
synthesize a reversible circuit. Also, the synthesis algorithm
presented in [11] have used simulated annealing to transform
ESOP cubes.

IV. REWRITING RULES

Most of the existing synthesis approaches for reversible
functions do not generate optimal circuit realizations with
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Fig. 4: Rewriting rules

respect to quantum cost. Therefore optimization approaches
are applied to reduce the quantum cost. These post synthesis
techniques attempt to apply reduction rules by deleting iden-
tical gates or replacing cascades of gates with smaller ones
[4]. To do so, the gates are rearranged to match the reduction
rules. The moving rules were originally defined in [5] as the
following property and illustrated in Fig. 4(a).

Moving rule. Two adjacent gates can be interchanged if
and only if the target for each gate is not a control for the
other gate, i.e., in a reversible circuit, gate T1(C1, t1) can be
interchanged with gate T2(C2, t2) if and only if t2 /∈ C1 and
t1 /∈ C2.

This moving rule is very restrictive, therefore, the conven-
tional moving rule was extended as described in [12] allowing
further moving abilities for each gate in the circuit. The
extended moving rule is defined in the following property.

Extended moving rule. A gate can be moved from one end of
a cascade of gates to the other end if its controls are on lines
that are invariant with respect to the cascade and its target is
on a non-controlling line.

To identify whether a line is invariant, an algorithm called
line labelling procedure (LLP) labels the line segments in a
circuit. A label is an assignment of numbers to each line after
a gate. If the label is the same at the beginning and the end
of the segment, then the line is invariant.

Rewriting rules. However, the above moving rules are re-
straining the movement of gates into a circuit. On the other
hand, the moving rules introduced in [6] are general for both
MCT and MPMCT cascades and have more freedom for gate
rearrangement. Based on the rules, we extract three scenarios
for moving a gate from one position to another as shown in
Fig. 4.
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Fig. 5: Circuit optimization wrt. different moving rules
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Fig. 6: Applied reductions

Example 3: Consider the reversible circuit depicted in
Fig. 5(a). Its NCV-cost is 39 while its T -depth is 21. When
this circuit is optimized using the conventional moving rules,
then the gate in position 1 could be moved to position 2. Hence
the gates in position 2 and 3 could be merged into one gate as
shown in the circuit depicted in Fig. 5(b). No more reductions
are possible. The obtained circuit has an NCV-cost of 34 and a
T -depth of 18. But if we consider the extended moving rules,
one can move from the circuit in Fig. 5(b) also the gate in
position 3 to the position 7 since its control line is invariant and
its target line does not contain any controls between position
3 and 7. Thus the moved gate would be removed with its
neighbour because they form an identity circuit. The obtained
circuit is shown in Fig. 5(c) and has NCV-cost of 32 and a
T -depth of 18. Now if we use the rewriting rules, one can
move the gate in position 3 from the circuit in Fig. 5(c) to
position 4 by applying the rule shown in Fig. 4(c). As a result
the moved gate form an identity with gate in position 5 and get
both removed. The resulting circuit is presented in Fig. 5(d).
It has an NCV-cost of 27 and T -depth of 15.

In the following, we will consider the rewriting rules for op-
timizing reversible circuits and show through the experimental
results its efficiency in reducing the quantum cost of reversible
circuits.

V. ALGORITHMS

To show the advantages of applying simulated annealing to
reduce the quantum cost for reversible circuit, we compare
it with the well known approach for optimizing reversible
circuits based on exhaustive search. To do so, we introduce
in this section as a first step a greedy approach combined
with the rewriting rules. Then, as a second step, we define the
simulated annealing approach. Both approaches are applied
to gate cascade with a common target. Note that gates can be
rearranged to create such a cascade using rewriting rules. Each
MPMCT optimization procedure finds possible reductions in
the circuit by moving gates across the circuit and making them

adjacent. The gates may either be cancelled when they are
identical or may be reduced to a less expensive cascade using
the five different rules sketched in Fig. 6.

A. Greedy Approach

Given is a reversible circuit G = T1(C1, t1) . . . Tk(Ck, tk)
with k gates over variables x1, . . . , xn. This algorithm opti-
mizes the circuit by applying a greedy approach.

For each gate, this technique searches over the circuit for a
gate that has the same target. A found gate can be merged with
the requested gate only when the rewriting process reduces
the quantum cost of the targeted reversible circuit. After a
reduction is applied, the optimization restarts the same process
from the first gate of the circuit.

B. Simulated Annealing Approach

Given is a reversible circuit G = T1(c1, t1) . . . Tk(ck, tk)
with size k over variables x1, . . . , xn. This algorithm op-
timizes the circuit by applying simulated annealing. For the
computation, we are making use of the variables k,T , frozen,
l, and ∆cost to denote the size of the circuit, the used
temperature, the stopping criterion, the number of generated
perturbation, and the cost variable, respectively. The remain-
ing variables (i, j, and optimized) are used to control the
algorithm loops.

The algorithm is listed in Algorithm 1. We have chosen the
initial temperature and the number of perturbation as factors
of the number of gates in the initial circuit while the stopping
criterion is set to 0 regardless of the size of the circuit and
should not exceed the value 5 (see lines 2, 3, and 4). The
algorithm generates, for a predetermined number of times l
(line 9), two different positions of gates (line 10 and 11)
denoted by loc and pos. Then, it calculates the rewriting cost
for rearranging them together (line 12). If the cost is decreased
then the solution is accepted, i.e, the gates are merged together
(line 14). Otherwise the solution is accepted with a certain
probability (line 18). After each loop the temperature T is
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Algorithm 1: Simulated annealing
Input: Reversible circuit G
Output: Optimized circuit G′

1 k ← Size(G)
2 T ← 10k
3 frozen← 0
4 l← 100k
5 while frozen > 5 do
6 j ← i + 1
7 optimized← False
8 i← 0
9 for i = 0 to l do

10 pos← Random(0,k)
11 loc← Random(0,k)
12 ∆cost ← RewriteCost(G, pos,loc)
13 if ∆cost < 0 then
14 RewriteMerge(G, pos, loc)
15 optimized← True
16 else
17 q ← Random(0,1)
18 if q < e−

∆cost
T then

19 RewriteMerge(G, pos, loc)
20 optimized← True
21 end
22 end
23 end
24 T ← 0.8T
25 if optimized then
26 frozen← 0
27 else
28 frozen← frozen + 1
29 end
30 end

decreased (line 24) and the stopping criterion frozen is reset to
0 when the circuit has changed (line 26) otherwise the variable
is incremented (line 28). This process is repeated until the
stopping criterion reaches the value 5.

VI. EXPERIMENTAL RESULTS

In this work, we proposed rule based approaches for op-
timizing MPMCT circuits using rewriting rules. The first is
using a greedy search algorithm while the second is using a
simulated annealing algorithm. The proposed ideas described
above in Sect. V have been implemented in the open source
toolkit RevKit [13]. The experimental evaluation has been
carried out on an Intel Core i5 Processor with 4 GB of main
memory using the benchmarks taken from [14], [15]. We have
observed that our approaches lead to reversible circuits with
smaller NCV-cost and T -depth.

The experimental results presented graphically in the plot
depicted in Fig. 7 show the NCV-cost of optimized reversible
circuits with respect to different optimization algorithms.
The values of x-axis and the y-axis denote the name of
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Benchmarks and the NCV-cost, respectively. The plot contains
three different scenarios: the NCV-cost of optimized reversible
circuits based on LLP approach [2] (in blue), the NCV-cost of
circuits optimized with greedy approach (in red), and the NCV-
cost of optimized circuits based on simulated annealing (in
green). One can clearly see that the greedy approach outper-
forms the LLP approach [2] based on extended moving rules.
While the simulated annealing approach produces circuits
with the smallest NCV-cost in comparison with the other
approaches. In the rest of the paper we consider only the
results of the greedy and simulated annealing approaches.

Our results capture the following values: (1) the results
of the greedy optimization approach (GA), (2) the results
of optimized reversible circuits using simulated annealing
approach (SA), (3) improved quality with respect to NCV-
costs and T -depths of resulting circuits from the greedy
approached compared to the original benchmarks (GA/OB),
(4) the quality of optimized circuits using simulated anneal-
ing compared to the original circuits (SA/OB), and (5) the
improvement of the simulated annealing approach over the
greedy approach (SA/GA).

In Table I, the results are summarized as follow: for each
benchmark we show the name (ID), the number of lines (L),
the NCV-cost (NCV), and the T -depth (TD). In addition to
these metrics, for each approach, we add the required run-
time in seconds (Time). The NCV-cost and the T -depth re-
duction and improvement are provided in the columns denoted
by ∆NCV, INCV, ∆TD, and ITD, respectively.

The results from the simulated annealing approach are given
in third, fifth, and sixth columns of Table I. Our proposed
second approach leads to significant T -depth and NCV-cost
reductions. Over all circuits, reductions up to 184589 NCV
gates can be obtained. Also, it enables further improvements
of the overall T -depth. The T -depth is reduced by 30% on
average and in the best case (mod5mils) by 86%.

As can be clearly seen, the effect of incorporating the
simulated annealing algorithm for reversible circuit optimiza-
tion is significant. By rearranging the gates in a random
way, further reductions are applied which confirms the idea
outlined in Sect. III. Therefore this approach outperforms the
greedy approach for most of the functions. Consider as an
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TABLE I: Experimental Results For Greedy and Simulated Annealing Approaches

Original Benchmark (OB) Greedy Ap. (GA) Simulated An. (SA) GA/OB SA/OB SA/GA
ID L NCV TD NCV TD Time NCV TD Time ∆NCV INCV ∆TD ITD ∆NCV INCV ∆TD ITD ∆NCV INCV ∆TD ITD

Aj-e11 4 141 84 131 78 0.0 91 54 0.9 10 7% 6 7% 50 35% 30 36% 40 31% 24 31%
mod5mils 5 281 168 121 72 0.0 41 24 0.2 160 57% 96 57% 240 85% 144 86% 80 66% 48 67%
hwb4 4 403 240 368 219 0.0 229 135 0.8 35 9% 21 9% 174 43% 105 44% 139 38% 84 38%
mod5d2 5 641 384 636 381 0.0 451 270 1.3 5 1% 3 1% 190 30% 114 30% 185 29% 111 29%
4gt10 5 760 456 500 300 0.0 520 312 0.8 260 34% 156 34% 240 32% 144 32% -20 -4% -12 -4%
ex1 5 955 573 945 567 0.0 695 417 3.0 10 1% 6 1% 260 27% 156 27% 250 26% 150 26%
4gt5 5 1010 606 930 558 0.0 700 420 1.1 80 8% 48 8% 310 31% 186 31% 230 25% 138 25%
hwb5 5 2700 1617 2265 1356 0.1 1544 924 4.2 435 16% 261 16% 1156 43% 693 43% 721 32% 432 32%
C17 6 8332 4998 5937 3561 0.3 4977 2985 12.7 2395 29% 1437 29% 3355 40% 2013 40% 960 16% 576 16%
hwb6 6 12340 7404 9620 5772 0.7 8090 4854 23.9 2720 22% 1632 22% 4250 34% 2550 34% 1530 16% 918 16%
ham7 7 17340 10404 13020 7812 2.0 8580 5148 30.9 4320 25% 2592 25% 8760 51% 5256 51% 4440 34% 2664 34%
sym6 7 29492 17694 24022 14412 4.1 19567 11739 79.2 5470 19% 3282 19% 9925 34% 5955 34% 4455 19% 2673 19%
hwb7 7 44435 26661 34645 20787 13.3 29995 17997 154.3 9790 22% 5874 22% 14440 32% 8664 32% 4650 13% 2790 13%
con1 8 99306 59580 80356 48210 45.4 68956 41370 508.4 18950 19% 11370 19% 30350 31% 18210 31% 11400 14% 6840 14%
z4 8 105380 63225 86990 52191 86.3 74260 44553 555.7 18390 17% 11034 17% 31120 30% 18672 30% 12730 15% 7638 15%
hwb8 8 150315 90189 118795 71277 289.3 103445 62067 1121.3 31520 21% 18912 21% 46870 31% 28122 31% 15350 13% 9210 13%
sqrt8 9 282759 169650 232954 139767 927.2 205669 123396 351.7 49805 18% 29883 18% 77090 27% 46254 27% 27285 12% 16371 12%
radd 9 292495 175494 241895 145134 1166.7 211416 126846 383.0 50600 17% 30360 17% 81079 28% 48648 28% 30479 13% 18288 13%
plus63 12 317821 190692 313871 188322 10183.9 311026 186615 342.4 3950 1% 2370 1% 6795 2% 4077 2% 2845 1% 1707 1%
urf1 9 381172 228702 321182 192708 2386.8 285702 171420 632.6 59990 16% 35994 16% 95470 25% 57282 25% 35480 11% 21288 11%
hwb9 9 449579 269745 377349 226407 4451.1 316135 189678 889.5 72230 16% 43338 16% 133444 30% 80067 30% 61214 16% 36729 16%
x2 15 511366 306816 499346 299604 3007.6 474546 284724 297.3 12020 2% 7212 2% 36820 7% 22092 7% 24800 5% 14880 5%
5xp1 10 517028 310212 433568 260136 6341.1 378968 227376 1544.3 83460 16% 50076 16% 138060 27% 82836 27% 54600 13% 32760 13%
root 10 536719 322029 447239 268341 4182.2 394789 236871 1498.0 89480 17% 53688 17% 141930 26% 85158 26% 52450 12% 31470 12%
max46 10 652290 391374 539680 323808 7096.7 484300 290580 2219.2 112610 17% 67566 17% 167990 26% 100794 26% 55380 10% 33228 10%
dist 10 677078 406242 560483 336285 10876.7 492489 295488 2360.5 116595 17% 69957 17% 184589 27% 110754 27% 67994 12% 40797 12%
9symml 10 902254 541347 759794 455871 3459.4 665089 399048 4862.9 142460 16% 85476 16% 237165 26% 142299 26% 94705 12% 56823 12%
sym9 10 912693 547611 781628 468972 3491.1 673958 404370 4548.1 131065 14% 78639 14% 238735 26% 143241 26% 107670 14% 64602 14%
urf3 10 962832 577698 815702 489420 4560.5 724112 434466 4708.2 147130 15% 88278 15% 238720 25% 143232 25% 91590 11% 54954 11%
sqr6 12 1157296 694374 979286 587568 4185.7 898006 538800 5980.3 178010 15% 106806 15% 259290 22% 155574 22% 81280 8% 48768 8%
rd84 11 1747516 1048503 1493116 895863 19181.5 1322236 793335 16395.8 254400 15% 152640 15% 425280 24% 255168 24% 170880 11% 102528 11%

Average 40274 17% 24165 17% 65872 30% 39523 30% 25598 16% 15359 16%

example the function hwb4, its realization is reduced by 8%
when the greedy approach is applied. Then additional 38%
of improvement is achieved by applying simulated annealing.
In general, the latter approach leads to additional quantum
cost reductions of 16% in average compared to realizations
optimized via the greedy approach.

VII. CONCLUSION

In this paper we introduced optimization approaches for
reversible circuits based on rewriting rules. We presented
two different strategies; a greedy approach and a simulated
annealing approach. On our set of functions we showed that
significant reductions (with respect to the NCV-cost and T -
depth) can be achieved, specially when simulated annealing is
considered.
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