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Abstract—Reversible computation is gaining increasing rele-
vance in the context of several post-CMOS technologies, the most
prominent of those being quantum computing. The problem of
implementing a given Boolean function using a set of elementary
reversible logic gates is known as reversible logic synthesis. Due to
the presumed hardness of the reversible circuit synthesis problem,
different heuristics have been proposed in the literature to reduce
quantum cost (QC), gate count, and logical depth without using
ancilla lines. Interestingly, none of these heuristics systemati-
cally utilize Fredkin gates. In this paper, we demonstrate, both
theoretically and empirically, that accommodating Fredkin gates
significantly improves the performance of reversible circuits.

I. INTRODUCTION

Reversible logic synthesis is an important research area
to address the synthesis issues of emerging nano-technologies
and post-CMOS technologies, where the primitive computing
elements are based on reversible logic gates. Besides quantum
computing, several classical computing problems, where gain-
free elementary computing structures are mandatory (e.g.,
photonic computing and encoder-decoder circuits) also require
reversible circuits.

Due to the difficulty of scaling up practical quantum
circuits for a large number of qubits, an important research
problem is to perform ancilla-free reversible logic synthesis,
within which we limit the scope of the current paper. For a
complete survey of reversible logic synthesis methods, readers
are kindly referred to [1].

Multiple synthesis methods have been proposed to perform
what can be grossly classified as first, optimal and non-
scalable methods [2], [3] and second, heuristic methods [4],
[5]. Heuristic methods can be further classified based on their
input Boolean function representation format such as truth-
tables, decision diagrams, and permutations. Ancilla-free re-
versible logic synthesis, so far, is reported for truth-table based
representation [4], binary decision diagrams [6], quantum
multiple-valued decision diagrams [7], and permutations [8].
Interestingly, none of these approaches include Fredkin gate
in the synthesis flow, rather it is used as a post-synthesis
optimization [9], [10].

Let us consider a simple synthesis scenario of the promi-
nent transformation-based method, known as MMD [4], after
its authors. MMD proceeds in a row-wise fashion altering
each bit in the output, which needs to be matched with the
corresponding input bit. Assuming we can use a Fredkin gate
successfully, instead of two Toffoli gates, one gate suffices to
match two bits. This allows a straightforward reduction of 1

reversible gate. Corresponding reduction in QC, assuming both
Toffoli and Fredkin gates employ n control lines, is

24(n− 3).

We refer to QC as the T -depth of the circuit according to [11]
which can be expanded for multiple-controlled Toffoli gates
using [12]. The above simple formulation provides a positive
reduction, i.e., an improved QC when n ≥ 4. This observation
also matches with the experiments done for template-based
post-processing schemes [9], where multiple templates with
swap gates are used. Another recent work attempting inclusion
of Fredkin gates in transformation-based synthesis is proposed
at [5], which reported improved performance for selected
benchmark circuits. However, a detailed experimental study
with large benchmark circuits as well as theoretical analysis
are missing so far. Both of these are addressed in this paper.

The rest of the paper is organized as following. The follow-
ing Sections II and III provide the background on reversible
logic synthesis in general and transformation-based reversible
logic synthesis in particular. Section IV introduces our key
idea of Fredkin-enabled synthesis. Sections V and VI provide
theoretical and experimental results supporting the presented
technique. The paper is concluded and future work is outlined
in Section VII.

II. PRELIMINARIES

A Boolean function f is of the form f : {0, 1}n → {0, 1}.
The output of the Boolean function f can be represented
as a string of size 2n consisting of ones and zeros. It can
also be represented as a multivariate polynomial over GF(2).
This polynomial can be expressed as a exclusive disjunction
(EXOR) of a constant a0 and one or more conjunctions of
the function argument. This is called the Exclusive Sum-Of-
Product (ESOP) representation. A less general representation
of the ESOP form is known as the Algebraic Normal Form
(ANF). The general ANF for a function f(x1, .., xn) over n-
variables can be written as,

f(x1, . . . , xn) =a0 ⊕ a1x1 ⊕ · · · ⊕ aixi ⊕ · · · ⊕ anxn

⊕ · · · ⊕ a1,2,...,nx1x2 · · ·xn
(1)

Reversible and irreversible Boolean functions: An n-
variable vectorial Boolean function is reversible if all its output
patterns map uniquely to an input pattern and vice versa;
otherwise it is called irreversible. It can be expressed as
an n-input, n-output bijection or alternatively, as a Boolean
permutation function over the truth value set {0, 1, . . . , 2n−1}.
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An irreversible Boolean function f : {0, 1}n → {0, 1}m
can also be made reversible with the help of extra constant-
initialized input lines known as ancilla. If those lines are not
restored to their original constant values at the end of the
computation, those are termed as garbage lines.

Reversible logic gates: A reversible gate library is a
smallest complete set of reversible gates which can be used
to build an arbitrary reversible circuit. Prominent reversible
logic gates are NOT, Toffoli, Fredkin and in general, unitary
transformations or rotations of qubits in the Bloch sphere. Any
complex reversible gate can be decomposed in terms of smaller
elementary gates [12].

III. TRANSFORMATION-BASED SYNTHESIS

MMD, a prominent transformation-based reversible logic
synthesis, introduced in [4] and improved in [9], [5] served as
the key benchmark synthesis technique for all the subsequent
reversible logic synthesis approaches, in particular those which
need zero ancilla lines. For the sake of completeness, we
briefly review MMD in this section. To keep this discussion
simple, optimizations of MMD (including bi-directional syn-
thesis) are skipped here. However, these are included in our
implementation and experimental benchmarking.

x1 y1

x2 y2

x3 y3
6 5 4 3 2 1

Fig. 1. Resulting circuit from example in Table I

Algorithm T (Transformation-based synthesis). Given
a truth table as a list of input-output mappings
(i(1), o(1)), (i(2), o(2)), . . . , (i(2

n), o(2
n)), this algorithm

finds a circuit by prepending gates to the empty circuit until
the truth table has been transformed to match the identity
function. The truth table is sorted by its input patterns.

T1. [Initialize.] Set j ← 1.

T2. [Create masks.] Set p← (i(j) ⊕ o(j)) & i(j), q ← (i(j) ⊕
o(j)) & o(j), and m← o(j).

T3. [Change 0’s to 1’s.] For each k such that pk = 1, prepend
a Toffoli gate with target on k and controls according to

the bits that are set in m, also flip o
(�)
k for all � such that

m ⊆ i(�). Set mk ← 1.

T4. [Change 1’s to 0’s.] For each k such that qk = 1, prepend
a Toffoli gate with target on k and controls according to

the bits that are set in m, also set mk ← 0, also flip o
(�)
k

for all � such that m ⊆ i(�).

T5. [Done?] If j = 2n, terminate, otherwise set j ← j+1 and
return to step 2.

We visit each truth table entry in order using the loop variable
j. For each row gates are inserted to match the output pattern
with the input pattern such that previous entries are not
modified. For this purpose, first bits that are 0 in the output

but 1 in the input are changed (their indexes are stored in the
mask p), and afterwards 1’s are changed to 0’s (their indexes
are stored in the mask q). The control lines of the gates are
assigned according to the mask m: We add a control line to
line k, if and only if mk = 1.

Note that several optimizations can be incorporated into
the algorithm which we omitted to keep its description simple.
As an example, for the first row the insertion of NOT gates
is sufficient since there are no previous rows that may be
changed. This step is explicitly described in the original
work [4]. Furthermore, before entering steps 2–4 one can
check, whether the input pattern matches already the output
pattern. (Note that in this case, both p and q are 0 and therefore
no gates are added in steps 3 and 4.) For each row ν(p | q)
Toffoli gates are prepended to the circuit, where ν denotes the
sideways sum.

Example 1: An example application of Algorithm T for
the reversible function ‘miller’ is illustrated by means of
Table I. The initial truth table is represented by the columns
labeled x1x2x3 and y1y2y3. Six steps need to be applied which
consecutively lead to new functions yi1y

i
2y

i
3 until eventually

y61y
6
2y

6
3 represents the identity function. The current considered

row is marked by ‘�’ and bits affected by the gate operation
are highlighted in blue. The resulting circuit is depicted in
Fig. 1.

IV. OPTIMIZED SYNTHESIS USING FREDKIN GATES

We propose to extend Algorithm T such that Fredkin gates
are explicitly considered, since they are able to modify two
bits at the same time. For this purpose the following steps are
added after step 2 in Algorithm T.

T2a. [Loop over k and l.] For all k, l such that pk = 1 and
ql = 1, perform step 2b.

T2b. [Add Fredkin gate.] Set m′ ← m, m′k ← 0, and m′l ← 0.
If m′ is a valid mask, prepend a Fredkin gate with targets
on k and l and controls according to the bits that are set
in m′. Also, set pk ← 0, ql ← 0, mk ← 1, and ml ← 0.

We loop over all pairs k and l such that k refers to a position
in the output pattern in which a 0 needs to be changed to a
1 and l refers to a position in the output pattern in which
a 1 needs to be changed to a 0. If these two bits can be
changed using a Fredkin gate, only one gate instead of two
needs to be added to the circuit. We can only add a Fredkin
gate if the mask m′ allows for a valid set of control lines,
i.e. a gate application does not changed previous input-output
mappings. There are different strategies to check whether m′
is a valid mask. A simple strategy is to check whether it is
lexicographically larger than the input of the current row, i.e.

m′ > i(j).

If that is the case, no previous row can be modified by the
gate application. This strategy is not exhaustive. A Fredkin
gate may change a previous row, however, it may swap two
0’s or two 1’s. In this case, the previous rows are not modified
either. This can be checked by the following condition:
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TABLE I. EXAMPLE APPLICATION OF THE MMD TRANSFORMATION-BASED SYNTHESIS APPROACH

1 2 3 4 5 6

x1x2x3 y1y2y3 y1
1y

1
2y

1
3 y2

1y
2
2y

2
3 y3

1y
3
2y

3
3 y4

1y
4
2y

4
3 y5

1y
5
2y

5
3 y6

1y
6
2y

6
3

000 000 000 000 000 000 000 000
001 �110 �111 �101 001 001 001 001
010 010 010 010 010 010 010 010
011 011 011 011 �111 011 011 011
100 100 100 100 100 100 100 100
101 101 101 111 011 �111 101 101
110 001 001 001 101 101 �111 110
111 111 110 110 110 110 110 111

TABLE II. EXAMPLE APPLICATION OF THE MMD TRANSFORMATION-BASED SYNTHESIS APPROACH USING FREDKIN GATES

1 2 3 4

x1x2x3 y1y2y3 y1
1y

1
2y

1
3 y2

1y
2
2y

2
3 y3

1y
3
2y

3
3 y4

1y
4
2y

4
3

000 000 000 000 000 000
001 �110 �101 001 001 001
010 010 010 010 010 010
011 011 011 �111 011 011
100 100 100 100 100 100
101 101 110 110 �110 101
110 001 001 101 101 110
111 111 111 011 111 111

(m′ > i(j)) ∨
∧
r≤j

m′&i(r)=m′

(
o
(r)
k = o

(r)
l

)
,

i.e. either m′ is lexicographically larger than the currently con-
sidered input pattern i(j) (such as in the simple case) or for all
previous rows r that do match the mask, i.e. m′ & i(r) = m′,
the output bits at the positions k and l must be equal.

Example 2: When applying the extensions discussed in
this section to the function from Example 1, we obtain the
circuit in Fig. 2. The transformations are given in Table I. Note
that the exhaustive mask validity checking has been used. Its
effect can be observed from the last column, in which previous
rows are affected but their values are not changed.

x1 y1

x2 y2

x3 y3
4 3 2 1

Fig. 2. Resulting circuit from example in Table II

V. THEORETICAL RESULTS

Despite significant works on the practical reversible logic
synthesis, there have been very few notable attempts [13], [14],
[15] to identify the theoretical bounds of different approaches,
which, if determined, would serve as the key indicator of
strength/weaknesses. For theoretical upper bound determina-
tion, we resort to the following reversible logic gate libraries:

• Multiple-Controlled Toffoli (MCT)

• Mixed-Polarity Multiple-Controlled Toffoli (MPMCT)

• Mixed-Polarity Multiple-Controlled Toffoli-Fredkin
(MPMCF)

We do not consider the extension of bi-directional synthesis in
the following discussions.

A. Theoretical Upper Bound for MMD using the MPMCT
Library

The theoretical upper bound on the gate counts for MMD
is determined for the MCT library in [13]. There, the authors
also identified circuits achieving this bound. For an n-variable
reversible Boolean function, the bound is

(n− 1)2n + 1 (2)

However, in view of recent results, deploying the MPMCT
library significantly improves quantum cost and thus, has been
adopted in all synthesis methods [7], [6], [16]. Therefore, we
first present some results on the theoretical upper bound of
MMD using MPMCT. This is followed by the analysis for
MPMCF library.

Lemma 5.1: The worst-case gate count for MMD [4] using
the MPMCT library is (n− 1)2n + 1.

Proof: In MMD, when the value of the binary expression
of the first output row is (2n−1), it will require the maximum
number of n gates to flip all the n bits. After matching the
first output row, assume the second output row is (2n − 2),
then n gates are needed as well. In matching the upper half
of the input-output table, n gates are assumed to be needed
for each row. From the 2n−1 + 1-th output row, n − 1 gates
are needed since the MSB is already fixed. Proceeding in this
manner, the MMD upper bound is obtained.

The aforementioned derivation [13] does not detail any-
thing about the control. It is assumed that for every row,
there will be an available set of positive control signals that
alter the target bit without affecting previously matched rows.
Implicitly, this is guaranteed since, for an unmatched row, it
cannot have same number of 1s in the same bit positions,
compared to the matched rows. Arguing along the same lines,
it can be deduced that MPMCT library does not reduce the
number of gates, since the gate count is linked to the number
of target bits and not the number or the polarity of the
controls. Hence, the upper bound on gate count for MMD
using MPMCT is (n− 1)2n + 1.

From the fact that the QC of a Toffoli gate with n control
lines is 24(n−3) [11], [12], we obtain the following corollary.
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x1 y1

x2 y2

x3 y3

Fig. 3. Worst-case circuit for fredkin-enabled MMD using MPMCF Library

Corollary 5.2: The upper bound of QC for MMD [4] using
the MPMCT library is ((n− 1)2n + 1) · 24(n− 3).

B. Theoretical Upper Bound for Proposed Fredkin-enabled
MMD using the MPMCF Library

The key idea for deriving this result is that, in Fredkin-
enabled MMD, application of one Fredkin gate matches two
bits compared to two Toffoli gates, which MMD would have
used. We show that there is a possibility of applying Fredkin
gates in nearly all the rows, considering the worst-case sce-
nario. We use the term quadrant here: The first quadrant refers
to the first 2n−1 output rows, the second quadrant refers to the
following 2n−2 output rows and so on.

Theorem 5.3: The upper bound of gate count for the
proposed Fredkin-enabled MMD using the MPMCF library is
(n− 2)2n + 2 + n.

Proof: In the worst-case scenario, the first output row will
require the maximum n NOT gates to match with the first input
row, 0, if its binary value is 2n− 1. In this row, Fredkin gates
cannot be applied. Now let us assume the second output row
is 2n − 2. Here we can apply one unconditional Fredkin gate
(basic swap gate) and n − 2 Toffoli gates, totaling to n − 1
gates. Assuming, we apply one Fredkin gate to each row of
the first quadrant, we need a total of (n − 1)2n−1 + 1 gates.
At this point, from the second quadrant onward, all the output
rows have 1 in its MSB position. To match the 2n−1 + 1-th
output row, again, we cannot apply any Fredkin gate.

Thus, it can be deduced that, in the first output row
of each quadrant, Fredkin gates cannot be employed. More
importantly, in all the other rows, at least one Fredkin gate
can be applied when we consider the worst-case scenario. To
have the case for Fredkin gate, we need either a 0 → 1 or
a 1 → 0 scenario, where → indicates desired alteration from
more significant bit-position to less significant bit-position. Let
us assume that we first apply all the necessary Toffoli gates
to match all other bits with the input row. In that case, if we
apply all the other bits as controls, only 1 → 0 is a valid
change and it does not affect the previous rows.

Thus, the worst-case count of gates (Tg) produced by the
algorithm can be computed as follows:

Tg = (n− 1)2n−1 + (n− 2)2n−2 + · · ·+ 0 · 2n−n + n

= (n− 1)2n−1 + (n− 2)2n−2 + · · ·+ 2 + n

With

2 · Tg = (n− 1)2n + (n− 2)2n−1 + · · ·+ 22 + 2n

we simplify

Tg = 2 · Tg − Tg

= (n− 1)2n − (2n−1 + 2n−2 + · · ·+ 22 + 2) + n

= (n− 1)2n − (2n − 1− 1) + n

= (n− 2)2n + 2 + n
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Fig. 4. Benchmarking gate count upper bounds

In an attempt to determine the circuit with worst-case gate
count, the series of transformations as assumed, are applied on
a 3-variable Boolean function. This is shown in the Table III.
The corresponding reversible circuit is presented in Fig. 3.

The improvement of the upper bound for our proposed
approach is pictorially depicted for increasing number of
variables in the Fig. 4. The worst-case count of Fredkin (Tf )
gates, while applying Fredkin-enabled MMD for MPMCT is
then,

Tf =

n∑
i=1

(2n−i − 1)

= (2n−1 − 1) + (2n−2 − 1) + (2n−3 − 1) + · · ·+ (2n−n − 1)

= (2n−1 + 2n−2 + 2n−3 + · · ·+ 2n−n)− n

= (2n−1 + 2n−2 + 2n−3 + · · ·+ 2 + 1)− n

With

2 · Tf = (2n + 2n−1 + 2n−2 + · · ·+ 2− 2n)

we simplify

Tf = 2 · Tf − Tf

= 2n − 1− n

The worst-case number of NOT gates (TNOT) is n, for the
first row. Thus, the maximum number of Toffoli gates with at
least one control line is

Tt = Tg − Tf − TNOT

= (n− 2)2n + 2 + n− 2n + 1 + n− n

= (n− 3)2n + n+ 3

Based on the above individual results, it can be deduced
that the worst-case QC for MMD using MPMCF is
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TABLE III. TRANSFORMATION-BASED SYNTHESIS FOR WORST-CASE 3-VARIABLE CIRCUIT

x1x2x3 y1y2y3 y1
1y

1
2y

1
3 y2

1y
2
2y

2
3 y3

1y
3
2y

3
3 y4

1y
4
2y

4
3 y5

1y
5
2y

5
3 y6

1y
6
2y

6
3 y7

1y
7
2y

7
3 y8

1y
8
2y

8
3 y6

1y
6
2y

6
3 y10

1 y10
2 y10

3 y11
1 y11

2 y11
3

000 �111 000 000 000 000 000 000 000 000 000 000 000
001 001 �110 �101 001 001 001 001 001 001 001 001 001
010 110 001 001 �101 �110 010 010 010 010 010 010 010
011 011 100 100 100 100 �100 �101 011 011 011 011 011
100 101 010 010 010 010 110 111 �111 �110 100 100 100
101 100 011 011 111 111 011 011 101 100 �110 101 101
110 010 101 110 110 101 101 100 100 101 111 �111 110
111 000 111 111 011 011 111 110 110 111 101 110 111

TABLE IV. EXPERIMENTAL RESULTS

w/o Fredkin (uni) w/o Fredkin (bi) w/ Fredkin (uni) w/ Fredkin (bi) w/ Fredkin+ (uni) w/ Fredkin+ (bi)
Benchmark Lines Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time

ham3 3 8 9 0.00 8 9 0.00 7 9 0.00 7 9 0.00 6 9 0.00 5 9 0.00
miller 3 6 15 0.00 6 15 0.00 6 15 0.00 6 15 0.00 4 9 0.00 4 9 0.00
3_17 3 11 12 0.00 11 12 0.00 8 12 0.00 8 12 0.00 11 12 0.00 6 6 0.00
hwb4 4 24 108 0.00 24 108 0.00 19 90 0.00 18 87 0.00 9 18 0.00 9 18 0.00
majority 6 14 246 0.00 14 246 0.00 21 258 0.00 21 258 0.01 14 246 0.00 21 258 0.01
sym6 7 351 11292 0.03 299 8484 0.03 304 9045 0.07 276 7476 0.06 285 8085 0.03 236 6363 0.05
urf2 8 790 39642 0.36 639 26706 0.30 647 30342 0.39 548 22617 0.26 595 25428 0.27 493 20304 0.24
con1 8 844 36516 0.16 713 27363 0.14 677 28338 0.31 575 22035 0.28 662 24738 0.15 549 21024 0.26
hwb9 9 2050 118551 0.79 1624 80106 0.61 1726 91233 1.60 1410 66432 1.29 884 37080 0.42 752 30948 0.65
adr4 9 1597 96645 0.59 1238 64728 0.46 1310 79686 1.16 1085 57831 0.93 1034 53550 0.45 926 48498 0.95
urf5 9 681 44571 0.24 626 38835 0.22 522 33501 0.47 445 28263 0.34 543 33177 0.24 400 24879 0.41
urf1 9 1804 114444 0.73 1422 75837 0.57 1541 90507 1.33 1182 61518 1.06 1323 69963 0.56 1114 57723 1.10
5xp1 10 4730 340692 3.68 3590 212877 2.70 3897 263034 7.92 3161 186555 5.95 3410 203790 3.02 2932 172878 5.38
urf3 10 3426 258045 2.56 2728 176727 1.98 2780 197532 5.72 2304 148929 4.97 2599 168795 2.18 2128 138303 4.02
sym9 10 4566 320940 3.50 3483 207138 2.64 3926 262137 8.15 3072 182337 5.63 3333 197742 2.81 2879 170595 6.51
rd84 11 10452 880071 18.18 7816 547011 12.38 8826 714717 34.15 6861 482220 27.04 7538 529110 13.38 6465 454059 38.71
clip 11 9948 865272 16.40 7492 539985 11.77 8412 687129 31.35 6632 478263 24.54 7205 517527 12.65 6219 446301 24.15
urf4 11 10527 914817 19.27 7800 563442 12.93 8908 722418 32.13 6980 495126 25.66 7460 537411 13.93 6495 459351 27.19
sym10 11 10192 859314 19.10 7540 523143 14.98 8639 707556 36.44 6658 476910 26.03 7387 516723 14.28 6243 438315 26.81
cycle10_2 12 19 1218 0.10 19 1218 0.09 19 1218 0.11 19 1218 0.10 19 1218 0.09 19 1218 0.10
dc2 13 49949 5784213 325.68 36354 3455097 228.80 42443 4652268 657.68 31761 3022143 497.75 35107 3354747 244.91 30556 2905056 557.79
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Fig. 5. Benchmarking quantum cost upper bounds

QC = QC(Tt) +QC(Tf ) +QC(TNOT)

= ((n− 2)2n − n+ 1) · 24(n− 3)

+ (2n − 1− n) · 24(n− 3)

= 24(n− 3)(2nn− 2n− 2n)

Graphically, the improvement in QC is shown in the Fig. 5.

VI. EXPERIMENTAL RESULTS

The synthesis approach we propose has been implemented
in C++ on top of RevKit [17].1 The results are listed in
Table IV and were generated using the RevKit program ‘trans-
formation_based_synthesis’. Standard benchmark circuits with
varying I/O sizes are taken from www.revlib.org. For each
circuit, the number of Toffoli gates, the quantum costs in
terms of T -depth in a Clifford+T mapping according to [11]
and the run-time (in seconds) are presented. Since this paper
is on demonstrating the effect of incorporating Fredkin gates
inside synthesis for cost reductions, we have not compared the
approach to other synthesis algorithms of a different kind, but
only to the classical transformation-based synthesis algorithm.
Future work will consider the incorporation of Fredkin gates
to these approaches.

The first two columns represent the standard MMD opera-
tions without Fredkin, in uni-direction or bi-direction mode.
The next two columns show the Fredkin-enabled synthesis
algorithm using the simple strategy for checking whether
the control mask is valid. The last two columns also show
results for applying the Fredkin-enabled synthesis algorithm
but using the exhaustive strategy to check mask validity.
Table V shows the percentage improvements. Notice that
uni-directional Fredkin-enabled synthesis is compared to uni-
directional MMD and bi-directional Fredkin-enabled synthesis
is compared to bi-directional MMD.

The application of Fredkin gates clearly shows significant
gate count and T -depth reduction without any noticeable
impact on the run-time. In average the run-time increases by

1The source code that has been used to perform this evaluation is available
at www.revkit.org (version 2.1).
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TABLE V. EXPERIMENTAL RESULTS (PERCENTAGE IMPROVEMENTS)

w/o Fredkin (uni) w/o Fredkin (bi) w/ Fredkin (uni) w/ Fredkin (bi) w/ Fredkin+ (uni) w/ Fredkin+ (bi)
Benchmark Lines Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time Gates T -depth Run-time

ham3 3 8 9 0.00 8 9 0.00 12.50 0.00 0.00 12.50 0.00 0.00 25.00 0.00 0.00 37.50 0.00 0.00
miller 3 6 15 0.00 6 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.33 40.00 0.00 33.33 40.00 0.00
3_17 3 11 12 0.00 11 12 0.00 27.27 0.00 0.00 27.27 0.00 0.00 0.00 0.00 0.00 45.45 50.00 0.00
hwb4 4 24 108 0.00 24 108 0.00 20.83 16.67 0.00 25.00 19.44 0.00 62.50 83.33 0.00 62.50 83.33 0.00
majority 6 14 246 0.00 14 246 0.00 -50.00 -4.88 0.00 -50.00 -4.88 0.00 0.00 0.00 0.00 -50.00 -4.88 0.00
sym6 7 351 11292 0.03 299 8484 0.03 13.39 19.90 -133.33 7.69 11.88 -100.00 18.80 28.40 0.00 21.07 25.00 -66.67
urf2 8 790 39642 0.36 639 26706 0.30 18.10 23.46 -8.33 14.24 15.31 13.33 24.68 35.86 25.00 22.85 23.97 20.00
con1 8 844 36516 0.16 713 27363 0.14 19.79 22.40 -93.75 19.35 19.47 -100.00 21.56 32.25 6.25 23.00 23.17 -85.71
hwb9 9 2050 118551 0.79 1624 80106 0.61 15.80 23.04 -102.53 13.18 17.07 -111.48 56.88 68.72 46.84 53.69 61.37 -6.56
adr4 9 1597 96645 0.59 1238 64728 0.46 17.97 17.55 -96.61 12.36 10.66 -102.17 35.25 44.59 23.73 25.20 25.07 -106.52
urf5 9 681 44571 0.24 626 38835 0.22 23.35 24.84 -95.83 28.91 27.22 -54.55 20.26 25.56 0.00 36.10 35.94 -86.36
urf1 9 1804 114444 0.73 1422 75837 0.57 14.58 20.92 -82.19 16.88 18.88 -85.96 26.66 38.87 23.29 21.66 23.89 -92.98
5xp1 10 4730 340692 3.68 3590 212877 2.70 17.61 22.79 -115.22 11.95 12.36 -120.37 27.91 40.18 17.93 18.33 18.79 -99.26
urf3 10 3426 258045 2.56 2728 176727 1.98 18.86 23.45 -123.44 15.54 15.73 -151.01 24.14 34.59 14.84 21.99 21.74 -103.03
sym9 10 4566 320940 3.50 3483 207138 2.64 14.02 18.32 -132.86 11.80 11.97 -113.26 27.00 38.39 19.71 17.34 17.64 -146.59
rd84 11 10452 880071 18.18 7816 547011 12.38 15.56 18.79 -87.84 12.22 11.84 -118.42 27.88 39.88 26.40 17.29 16.99 -212.68
clip 11 9948 865272 16.40 7492 539985 11.77 15.44 20.59 -91.16 11.48 11.43 -108.50 27.57 40.19 22.87 16.99 17.35 -105.18
urf4 11 10527 914817 19.27 7800 563442 12.93 15.38 21.03 -66.74 10.51 12.12 -98.45 29.13 41.25 27.71 16.73 18.47 -110.29
sym10 11 10192 859314 19.10 7540 523143 14.98 15.24 17.66 -90.79 11.70 8.84 -73.77 27.52 39.87 25.24 17.20 16.22 -78.97
cycle10_2 12 19 1218 0.10 19 1218 0.09 0.00 0.00 -10.00 0.00 0.00 -11.11 0.00 0.00 10.00 0.00 0.00 -11.11
dc2 13 49949 5784213 325.68 36354 3455097 228.80 15.03 19.57 -101.94 12.63 12.53 -117.55 29.71 42.00 24.80 15.95 15.92 -143.79

Average 12.42 15.53 -68.22 10.72 11.04 -69.20 25.99 34.00 14.98 22.58 25.24 -68.37

about 70%, for uni-directional synthesis using the exhaustive
strategy for mask validity checking, the run-time decreases
by about 15% in average. Gate count can be decreased by
up to 26% in average and T -depth can be decreased by
up to 34% in average (uni-directional, exhaustive strategy).
Best cases are 62.5% for gate count and 83.33% for T -
depth (‘hwb4’, exhaustive strategy). Only for the benchmark
‘majority’ negative or no improvements are obtained with all
four configurations.

VII. CONCLUSIONS

In this paper, transformation-based reversible logic synthe-
sis algorithm for constructing ancilla-free reversible circuits
is revisited. By introducing Fredkin gates in the synthesis
method, the theoretical worst-case bound is reduced. This is
corroborated by experimental evidence. In future, introduction
of Fredkin gates in other synthesis methods will be studied.
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