
Self-Verification as the Key Technology
for Next Generation Electronic Systems

Rolf Drechsler1,2 Hoang M. Le1 Mathias Soeken1,2

1 Department of Mathematics and Computer Science, University of Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{drechsle,hle,msoeken}@informatik.uni-bremen.de

ABSTRACT
Most safety critical systems today cannot be completely
verified by state-of-the-art verification approaches before
their deployment to the real world. The rapidly growing
complexity of these systems is amplifying the strong demand
of a disruptive innovation in verification technology. In this
invited paper, we propose the concept of self-verification — a
fundamental change to the way how verification is approached
by employing it as a post-deployment process. This enables
a new generation of safety critical systems that are capable
of verifying themselves. Essential for the realization of this
idea is the design of a core system carrying self-verification
capacities. We outline a possible architecture of the core
system and demonstrate two application scenarios of how
self-verification could be realized. The first one targets the
verification of evolving systems whereas the second one allows
the seamless integration of partially unverified components
in safety-critical applications.

1. INTRODUCTION AND BACKGROUND
Embedded systems, as they occur e.g. in microchips in

their simplest forms, have dramatically changed our life in
recent years. Most of the time, we do not even realize with
how many electronic systems and microchips we are getting
involved with each day, since they are usually integrated
unobtrusively. They are installed in our phones, tablets,
coffee machines, tooth brushes, washing machines, and many
more. Defects in those devices usually do not lead to serious
consequences but only to undesired maloperation. However,
we also lay our lives into the hands of embedded systems when
they are e.g. controlling medical or transportation devices
as in implants or airplanes, respectively. As users of these
safety critical systems, we are usually assuming a fault-free
behavior. But severe consequences are to be expected if the
underlying microchips have even slightest defects [6]. Since a
simple defect in a safety critical system can cause deaths in
the worst case, assuring the correctness of embedded systems
is of uttermost importance.

On top of this, the complexity of systems has steadily
grown over the last 40 years in an exponential manner ac-
cording to Moore’s law resulting in systems with over a billion
components. These are among the most complex systems
that mankind has ever built while being integrated in circuits
on a few square centimeters.

In order to check whether these complex systems are free
of any error, verification methods are applied which check

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SBCCI ’14, September 01 - 05 2014, Aracaju, Brazil
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3156-2/14/09 ...$15.00.
http://dx.doi.org/10.1145/2660540.2660983

whether the system meets its specified requirements. Current
industry practice applies the following verification techniques
in the design flow:

• Simulative verification, in which based on a model of the
circuit the inputs are explicitly assigned, propagated
through the circuit, and the outputs are compared to
the expected values. This technique is very mature and
well-supported by all major EDA companies.1

• Emulative verification, which realizes simulation di-
rectly in hardware thereby achieving an acceleration of
some orders of magnitudes. EDA vendors also provide
good support in this area.2

• Formal verification, which considers the problem math-
ematically and proves that a chip is correct. This is
currently an intensively considered topic in both aca-
demic research and industry with commercial tools
available.3

To ensure the correctness of a system, all techniques can
be considered. However, exhaustive application of input
patterns by simulation or emulation is practically intractable
and thus only applicable to small scale circuits. This is
caused by the so-called exponential explosion: the problem
space which contains all possible combinations is doubled
whenever a single input is added to the circuit. Already
today, these techniques do not scale and therefore cannot
offer sufficient quality.

Often, formal verification methods come to help in these
situations since they can efficiently traverse large parts of
the search space by applying clever implications during the
proof. Formal verification techniques are, however, much
more complex both in terms of implementation and in use
compared to their simulative counterparts. Further, although
formal methods often provide a good alternative to simulative
and emulative methods, they are far from being applicable
to embedded systems with billions of gates — dimensions
which are state-of-the-art in today’s designs.

In summary, current approaches are unable to completely
verify complex systems and thus cannot guarantee the cor-
rectness of embedded systems of modern scale before their
deployment.

2. SELF-VERIFICATION
The verification challenge of next generation system design

requires a fundamental change in the way how verification
is applied. We propose self-verification as the new key tech-
nology. Next generation systems should be able to verify
themselves at run-time and ensure their complete correctness
after the deployment.4

1e.g. http://www.mentor.com/products/fv/questa/
2e.g. http://www.cadence.com/products/sd/palladium_
xp/Pages/default.aspx
3e.g. http://www.onespin-solutions.com or http://www.
jasper-da.com
4Self-verification is well-known as an abstract concept, but to
the best of our knowledge there exists no concrete approach
in the context of hardware/software systems. For example

http://www.mentor.com/products/fv/questa/
http://www.cadence.com/products/sd/palladium_xp/Pages/default.aspx
http://www.cadence.com/products/sd/palladium_xp/Pages/default.aspx
http://www.onespin-solutions.com
http://www.jasper-da.com
http://www.jasper-da.com

Essential for the realization of self-verification is the inte-
gration of state-of-the-art verification engines into the sys-
tem under consideration. This allows to apply current pre-
deployment verification approaches to the system while it
is in operation. This post-deployment verification process
provides two major benefits. First, it allows the system to
extend its functionality in various ways, that are not known
a priori, while still maintaining its functional correctness.
The second benefit is a much better scalability of verifica-
tion. This is due to the fact that during the design phase
no assumption can be made about the input stimuli thereby
leading to a tremendous search space, while realistic input
assumptions can be mined when the system is in operation.
These benefits are demonstrated in two major scenarios in
the following:

1. Evolutionary Scenario: We start with a completely
verified system of small size. This system is extended
during operation and these extensions are also verified
at run-time. Once checked completely, they become
part of the verified system.

2. Partial Scenario: We start with a partially verified
system, where the parts that could not be checked
prior to production are known. These parts are verified
during normal operation.

Both scenarios will be addressed in the following. We start
with a description of the Evolutionary Scenario and also
provide a first experimental evaluation. Then, we address
the Partial Scenario.

2.1 Evolutionary Scenario
We envision the architecture of self-verifying systems as

follows:
• A core system builds the basis which is just as large such

that conventional verification methods can be applied
in order to guarantee 100% functional correctness. It
is a full-fledged embedded system which can contain
both hardware and software components. This can
for example be a small 32-bit processor with a simple
operating system.

• The core system is equipped with additional hardware
which can be reconfigured during run-time to integrate
more functionality — the evolution step. Therefore,
the system size is not fixed at the beginning.

• In order to modify the system at run-time, the core
system contains further components: a monitor, an
analyzer, a synthesizer, and a verifier. The monitor
observes the control and data flow for reoccurring pat-
terns. Once such patterns are recognized, the analyzer
tries to generalize a new or modified functionality and
the synthesizer implements the necessary logic on ad-
ditional reconfigurable hardware. Finally, the verifier
proves that the new implementation indeed works as
expected and is fully correct.5

As formal verification techniques we target both equivalence
checking (e.g. [10]) and property checking (e.g. [1]). Equiv-
alence checking proves that two circuits realize the same
functionality, e.g. that an optimized version is still equivalent
to the original one. Property checking instead proves whether
a circuit meets a given property. A property is usually ex-
pressed as a temporal formula and can also be synthesized
as hardware [2].

Employing such an architecture, the self-verifying system
can evolve and thus become more powerful due to the use

in [8], the author outlines a vision of future systems, which
can optimize themselves and are capable to verify these
optimizations after deployment. However, no concrete ideas
for a realization are given.
5Although formal verification techniques are desired for this
step, in this scenario also emulative verification can be em-
ployed for providing a real-time simulation. This is especially
applicable if the additional state space is of reasonable size.
Otherwise, hybrid approaches can be used, as is studied
below.

of its additional components. As a result, functionality that
cannot be verified by the initial system can be accessed in a
later evolution phase. Hence, self-verifying systems in this
scenario grow incrementally and as a result improve and
inherit their verification capabilities.

2.1.1 Core Components of the Architecture
This section describes the design of the core components.

Each component comes along with individual challenges. The
monitor must be able to detect patterns on different levels
of abstraction. That is, it is often not sufficient to only
observe data on bit-level but also observe associated bits
as chunks on the word-level, e.g. sequences of instructions.
The analyzer must be able to interpret the data given by the
monitor in order to derive new information. Machine learning
algorithms provide a good basis for the analyzer component.
The synthesizer needs to be able to synthesize space efficient
realizations in a reasonable amount of time. Since these
two metrics are typically inverse-proportional, the synthesis
algorithm and particularly its underlying data structures
have a significant influence on the whole system. This is to
be addressed by evaluating methodologies based on different
graph-based function representations such as Binary Decision
Diagrams (BDDs, [3]) or AND-inverter graphs (AIGs, [9]).
Finally, the verifier shows the correctness of new components
in the system. Since verification is also the most complex task
among the core components, the simultaneous integration
of several complementary techniques is required. The core
system can be designed to have its own operating system on
which verification tools can run as software. This is possible
for both equivalence and property checking. Moreover, these
verification techniques can also be employed using hardware
by means of emulation thereby enabling real-time simulation.

Based on the overall architecture we now come to a more
detailed description of an application of this concept followed
by some initial experimental evaluation.

2.1.2 System Verification
In this section, an application scenario of self-verification

for verifying evolving systems based on equivalence checking
is described. The most challenging part of the implementa-
tion are the special purpose modules of the core system such
as the analyzer, the synthesizer, and the verifier. In particu-
lar the verifier requires adapting state-of-the-art equivalence
checking techniques, which are currently implemented in
large software systems, in such a way that they are available
on the fabricated system. However, although the actual
implementation of the verification method in an embedded
system is complex, we expect tremendous benefits from it.

There exist many interesting scenarios which can be im-
plemented as an initial prototype for self-adaptive systems.
We can make use of a simple processor such as OpenRISC6

or the processor presented in [5] as the verified core system
with an instruction set architecture consisting of a small
set of elementary operations. After some time in operation,
new functionality may be required, which can be realized by
adding new or optimized instructions to the processor. These
are detected by a monitor, realized by the analyzer and the
synthesizer, and finally verified by the verifier component.

The scenario is illustrated by means of Fig. 1. In this
example, the monitor observes the instruction stream for
reoccurring patterns, i.e. sequences of instructions (step 1).
It can be seen that a multiplication (MULT) followed by a
left-shift by a constant (SLU) occurs regularly among the
instructions (step 2). In case such patterns are detected, the
analyzer determines the functionality and suggests a new
instruction by obtaining the specification from both extracted
instructions. From this the synthesizer module builds a new
hardware component that realizes the same functionality but
more efficiently (step 3). This new component is verified (step
4) and can then be used in order to enhance the processor’s
performance. Note that steps 2 (analyzing) to 4 (verifying)

6http://opencores.org/or1k/Main_Page

http://opencores.org/or1k/Main_Page

core system

... LDA SUB BZ MUL SLU SUBU AND MUL SLU ADD MUL SLU ...

MUL a b c
SLU a a 5

= MULSL5 a b c

obtain
specification

add. hardware

1 monitoring

2 analyzing

3 synthesizing

4 verifying

Figure 1: Self-verification based on equivalence checking

may be executed repeatedly until the verification process is
successful. From the counter-examples of the verifier, the
analyzer can then get additional information to design the
new component.

2.1.3 Preliminary Evaluations
In order to perform formal verification on the self-verifying

system we need formal engines such as SAT solvers or BDD
packages that run on the core system. We did some pre-
liminary evaluations with the BDD11 package from Donald
E. Knuth7 that he implemented while preparing the content
for Volume 4A of The Art of Computer Programming [7].
BDD11 is a very basic BDD package with simple operations
for BDD manipulation and no support for additional func-
tionality such as variable reordering or complement edges.
Since it has an own memory implementation and no dynamic
allocation it is very suitable for running on the core system.
We were able to compile the BDD package for the OpenRISC
platform with no further adjustment. The BDD package is
implemented in only 1850 lines of C code which result in
18555 instructions for the OpenRISC platform after compila-
tion. Consequently, the overhead of having a proof engine
on the chip is very low.

A possible testcase is that a system contains a newly gen-
erated complex arithmetic component, e.g. the combined
multiplier with shifting from Fig. 1 that cannot be fully veri-
fied, even though the initial shift operation and the multiplier
were proven to be 100% correct. For performing the equiva-
lence check a hybrid technique can be used by representing
parts of the structure symbolically, while enumerating all
the remaining solutions. Since we are not using simulation
of the RTL model, but the real clock speed of the designed
circuit, these instances become manageable.

To demonstrate the idea, as an experiment we implemented
a hybrid verification routine for an 8-bit adder that computes
the n least significant bits of the adder symbolically using the
BDD package and the remaining 8 − n most significant bits
explicitly using circuit simulation. The results are presented
in Table 1 in which the number of executed instructions are
listed. We have obtained these numbers using the OpenRISC
simulator. As can be seen the hybrid architecture is useful as

7http://www-cs-faculty.stanford.edu/~uno/programs/
bdd11.w

Table 1: Results of the adder experiment
Bitwidth Instructions

Explicit Symbolic Explicit Symbolic Total
0 8 0 14 507 523 14 507 523
1 7 3 038 13 838 723 13 841 761
2 6 16 408 13 222 571 13 238 979
3 5 92 352 12 663 247 12 755 599
4 4 486 104 12 159 014 12 645 118
5 3 2 421 256 11 713 922 14 135 178
6 2 11 602 920 11 323 487 22 926 407
7 1 54 094 760 10 990 683 65 085 443
8 0 247 124 776 0 247 124 776

the best performance, i.e. the minimal number of instructions,
is achieved when simulating half of the bits symbolically and
half of them explicitly.8

2.2 Partial Scenario
While the previous scenario was based on the idea of

starting with a fully verified core that is extended stepwise,
the concept of self-verification can also be applied in the case
where a priori known components are integrated that are not
fully verified yet. The verification process continues while
the system is in use.

More formally, this application scenario of self-verification
considers the integration of an unverified component Cunv

into a safety-critical system. The idea is that Cunv is too
complex for complete verification. This might e.g. result from
the complex structure of the component itself or from the fact
that during the design phase no assumption can be made
about the input stimuli thereby leading to a tremendous
search space. These assumptions are usually given in terms
of a model of the environment.

In the following we make use of the same four components
introduced above, although they are used in slightly different
contexts.

The monitor can be used to capture this model of the
environment, which is continuously updated during run-time.
Then, Cunv can be verified post-deployment by exploiting

8Note that a very similar experimental setup can also be
applied in the scenario discussed below.

http://www-cs-faculty.stanford.edu/~uno/programs/bdd11.w
http://www-cs-faculty.stanford.edu/~uno/programs/bdd11.w

core system

properties

Cunv

exception

holds?
yes

no

1 monitoring 2 analyzing 3 synthesizing 4 verifying

observes input
patterns

generates new
assumption

synthesizes
properties

verifies
properties

Figure 2: Self-verification based on property checking

better assumptions on the actual input assignments. The
scenario is illustrated by means of Fig. 2. We propose to
insert the unverified component Cunv into the circuit together
with the properties that could not be verified in advance.
Additionally, a special component realizing an exception
routine is added that should be executed if the properties
fail. This guarantees a controlled handling in unexpected
situations. The overall flow works as follows: Instead of
passing the signals to Cunv directly, first the properties are
checked for this particular pattern. If the properties hold,
the component is executed and otherwise, the exception
routine is triggered. As one consequence, this significantly
slows down the execution time. However, the self-verification
architecture enables a solution to this problem: The monitor
observes the input patterns which are sent to Cunv (step
1 in Fig. 2). As mentioned above, no (adequate) model of
the environment was given when designing the circuit which
made verification impossible. However, now during operation
it is possible to see which inputs are actually assigned. After
observing some (probably reoccurring) input patterns, the
analyzer generates new assumptions of the environment from
which a model is obtained and (re-)synthesized (step 2). The
verifier tries to solve the properties with these assumptions
and in case of success the control logic around Cunv can be
optimized in the following way: All input patterns that are
contained in the assumption generated by the analyzer can
directly be passed to the component. All other patterns
still require the additional check through the synthesized
properties (steps 3–4). Afterwards, the whole process can
be repeated for the new input patterns that are assigned to
the component. Eventually more properties are derived and
verified enabling 100% correctness for the component at a
high execution speed in the safety-critical system.

Finally, note that the same techniques presented in Sec-
tion 2.1.3 can be applied in the Partial Scenario to verify
the components either by a lightweight formal tool or by a
hybrid approach.

3. CONCLUSIONS
In this paper we presented the concept of self-verification

and described a possible architecture for its realization. Two
scenarios have been outlined, namely the Evolutionary Sce-
nario and the Partial Scenario. Based on this concept veri-
fication of next generation complex systems becomes man-
ageable, since it allows for complete verification and hence
implements Completeness-Driven Development (CDD) [4].

As a first experimental study outlined, it is possible to
have not only testing equipment on board – such as it is
standard today using Build In Self Test (BIST) – but also
verification engines that allow formal proofs while the system
is in operation.

Acknowledgements
The ideas in this paper have emerged from many discussions
over different verification flows within the context of the Rein-
hart Koselleck project supported by the German Research
Foundation (DFG) under contract no. DR 287/23-1. The
authors would like to thank all project members for these
fruitful discussions. Furthermore, the authors like to thank
Robert Wille for several helpful comments on an early draft
of this paper.

4. REFERENCES
[1] J. Baumgartner, A. Kuehlmann, and J. A. Abraham.

Property checking via structural analysis. In Int’l Conf.
on Computer Aided Verification, volume 14, pages
151–165, 2002.

[2] M. Boule and Z. Zilic. Automata-based
assertion-checker synthesis of PSL properties. ACM
Trans. Design Autom. Electr. Syst., 13(1), 2008.

[3] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[4] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne,
H. M. Le, J. Seiter, M. Soeken, and R. Wille.
Completeness-driven development. In Int’l Conf. on
Graph Transformations, pages 38–50, 2012.

[5] D. Große, U. Kühne, and R. Drechsler. HW/SW
co-verification of embedded systems using bounded
model checking. In ACM Great Lakes Symposium on
VLSI, volume 16, pages 43–48, 2006.

[6] J. C. Knight. Safety critical systems: challenges and
directions. In Int’l Conf. on Software Engineering,
volume 22, pages 547–550, 2002.

[7] D. E. Knuth. The Art of Computer Programming,
volume 4A. Addison-Wesley, Upper Saddle River, New
Jersey, 2011.

[8] W. Luk. The Future of Computing, essay in memory of
Stamatis Vassiliadis, chapter Self-optimizing and
self-verifying design: a vision, pages 69–79. Delft, The
Netherlands, September 28, 2007.

[9] A. Mishchenko, N. Eén, R. K. Brayton, M. L. Case,
P. Chauhan, and N. Sharma. A semi-canonical form for
sequential AIGs. In Design, Automation and Test in
Europe, volume 16, pages 797–802, 2013.

[10] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken.
Data-driven equivalence checking. In ACM SIGPLAN
Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, volume 27, 2013.

	Introduction and Background
	Self-Verification
	Evolutionary Scenario
	Core Components of the Architecture
	System Verification
	Preliminary Evaluations

	Partial Scenario

	Conclusions
	References

