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Abstract. The need to consider fault tolerance in quantum circuits has
led to recent work on the optimization of circuits composed of Clifford+T
gates. The primary optimization objectives are to minimize the T -count
(number of T gates) and the T -depth (the number of groupings of parallel
T gates). These objectives arise due to the high cost of the fault tolerant
implementation of the T gate compared to Clifford gates. In this paper,
we consider the mapping of a circuit composed of NOT, Controlled-NOT
and square-root of NOT (NCV) gates to an equivalent circuit composed
of Clifford+T gates. Our approach is heuristic and proceeds through
three phases: (i) mapping a circuit of NCV gates to a Clifford+T circuit;
(ii) optimization of the placement of the T gates in the Clifford+T circuit;
and (iii) optimization of the subcircuits between T gate groupings. The
approach takes advantage of earlier work on the optimization of NCV
circuits. Examples are presented to show the approach presented here
compares well with other approaches. Our approach does not add ancilla
lines.

1 Introduction

Quantum circuits are an important model of quantum computation and there
is thus considerable interest in the synthesis and optimization of such circuits
[9, 11, 15]. Recently, there has been particular interest in circuits composed of
Clifford+T gates [2, 3, 14] where a major objective is to minimize the number
of T gates and particularly the T -depth of the circuit. This is motivated by the
importance of fault tolerance in quantum computations [5, 18] and by the fact
the cost of the fault tolerant implementation of a T gate can exceed the cost of
implementing a Clifford gate by a factor of 100 or more [2].

Previously, there has been work on the optimization of NCV circuits [4, 13].
In this paper, we consider the mapping of an NCV circuit to an equivalent circuit
composed of Clifford+T gates with particular emphasis on optimizing T -count
and T -depth. The approach is heuristic but as examples will show, the approach
compares well with other methods. In particular, we compare our method to
circuits produced by the matroid partitioning approach described by Amy et
al. [2] which optimizes T -count and T -depth. Our approach is comparable for
those parameters and yields lower circuit depth in certain cases. We do not
consider the addition of ancilla lines in this work.
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Table 1. Gate definitions

Type Symbol Matrix Diagram Type Symbol Matrix Diagram

NOT N

(
0 1
1 0

)
CNOT C

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ •

controlled
V

(V =
√
N)

V

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1+i

2
1−i
2

0 0 1−i
2

1+i
2

⎞
⎟⎟⎠ •

V

controlled

V † V †

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1−i

2
1+i
2

0 0 1+i
2

1−i
2

⎞
⎟⎟⎠ •

V †

Hadamard H 1√
2

(
1 1
1 −1

)
H

T gate T

(
1 0

0 e
iπ
4

)
T T gate−1 T †

(
1 0

0 e
−iπ
4

)
T†

Phase S

(
1 0
0 i

)
S Phase−1 S†

(
1 0
0 −i

)
S†

The rest of the paper is organized as follows. Section 2 provides the back-
ground for the work. Our NCV to Clifford+T mapping approach is described
in Section 3 and examples are given in Section 4. The paper concludes with
suggestions for further work in Section 5.

2 Background

We assume the reader is familiar with the basics of quantum circuits and their
representations and only provide the notation and specifics required for this
work. A full review of the background can be found in the literature, e.g. [11].

Definition 1. A quantum circuit is a model of quantum computation repre-
senting a sequence of quantum operations. Each operation is represented by a
quantum gate and the circuit is a cascade of gates where the circuit lines repre-
sent the qubits (quantum bits) of a quantum system. A quantum circuit has no
fanout or feedback.

The gates used in quantum circuits are commonly defined by unitary matrices
and we do so in Table 1 which shows the gates used in this paper. U will denote
an arbitrary quantum operation. Note that since the matrices of interest are
unitary, the adjoint (denoted by †) is the inverse.

The C, V and V † gates are controlled gates and the operation is applied to
the target line if, and only if, the control line (indicated by a •) is 1.

The Toffoli gate [11] is like the CNOT except it has two controls which must
both be 1 for the target to be inverted. This has been generalized to multiple-
control Toffoli (MCT) gates [4] which have a number of controls all of which
must be 1 for the target to be inverted.

Quantum Gate Properties. The following quantum gate properties are im-
portant in this work.

1. (a) H = H−1 (b) S = TT (c) S† = T †T †
2. (a) U1

• •

U2

≡ U1

• •

U2

(b) •

•

≡ •

•
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3. • ≡ • •
V V

≡ • •

V † V †

4. (a) T •
U

≡ • T

U

(b) T† •

U

≡ • T†

U

5. (a) • •
T

≡ T

• •
(b) • •

T†
≡ T†

• •

6. (a) • •
• T

U

≡ • •
T •

U

(b) • •

• T†

U

≡ • •

T† •

U

7. (a) • •
•

≡ •
•

(b) •
• •

≡ • •

We refer to the structures in Property 5 as CTC structures where the T can
be a T or T † gate. Note the three gates in the structure have a common target
and the two CNOTs have a common control. Applying Property 5(a) or (b) will
be referred to as flipping the CTC structure.

Property 6 is somewhat surprising and provides considerable flexibility in
moving gates. It is a direct consequence of Properties 4 and 5.

Property 7 gives two important identities for reducing the number of CNOT
gates in a circuit. The applicability of Property 7(a) was illustrated in [17].
Note the equivalence shown is a particular example. The general rule is that
interchanging 2 CNOTs which share a qubit as target for one and control for
the other introduces a third CNOT with control and target from the unshared
lines of the initial pair of gates. Property 7(b) is a direct consequence of 7(a).
These properties have not been widely used in the literature but are in fact quite
effective as will be shown below.

In this paper, we refer to three types of circuits:

– MCT: which are composed of MCT gates which includes NOT, CNOT and
Toffoli gates;

– NCV: which are composed of N , C, V and V † gates; and

– Clifford+T : which are composed of the Clifford gates N , C, H , S and S†,
together with T and T † gates.

The following define key characteristics used in evaluating circuits.

Definition 2. A circuit level is defined as a sub-sequence of gates in a circuit
that can be applied in parallel. We assume in this work that two or more gates
can operate at the same level if they operate on disjoint qubits and can be grouped
together in the circuit.

Definition 3. Circuit depth is the number of levels in the circuit.

Definition 4. The T -count of a Clifford+T circuit is the total number of T
and T † gates in the circuit.

Definition 5. The T -depth of a Clifford+T circuit is the number of levels in
the circuit that contain one or more T or T † gates.
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3 Mapping NCV Circuits to Clifford+T Circuits

In this section, we present a heuristic approach to mapping an NCV circuit to a
Clifford+T circuit. The approach involves a sequence of steps as outlined in the
following where we use the development of a Clifford+T circuit implementing a
full adder as a running example.

Initial Expansion. A V gate can be expanded to Clifford+T gates as shown
in (1) [16]. Note that the T on the top line can be placed as shown, between
the two CNOTs, or above the left H . The T on the bottom line can be moved
to be between the left-side H and CNOT gates. Provided the top T is not
between the CNOTs, the CNOT-T †-CNOT structure can be flipped. For a V †
gate, interchange T and T † gates in (1) and the above observations apply.

a •
b V

≡ • • T

H T† T H

(1)

Given the above, an NCV circuit can be expanded to a Clifford+T circuit by
expanding each V and V † gate. Our approach does this by traversing the NCV
gates from the inputs (left side) to the outputs (right side). In doing this, recall
that H is self-inverse so two adjacent H gates on the same qubit cancel and are
not included in the expansion.

T and T † gates outside CTC structures are specially considered as T and T †
are inverses so cancel if next to each other on the same qubit. Also two successive
T gates form an S and two successive T † gates form an S†. Our approach uses
a simple counting procedure to track the T and T † gates and only places a gate
when forced to when an H gate or CNOT target is encountered as the circuit
is traversed or the end of the circuit is reached. The details of our method are
outlined in the following algorithm description:

Initial Expansion Algorithm. Let n be the number of qubits (lines) in the
circuit. H is the set of lines with pending H gates. For each line i, Ti is a counter
of the T and T † gates on line i. By incrementing for the former and decrementing
for the latter, cancellations are directly accunted for. Let g denote the current
gate and let t represent its target. c will represent the control if g is a controlled
gate.

1. Set H = ∅ and set Ti = 0 for 1 ≤ i ≤ n. Start at the leftmost gate in the
circuit.

2. If g is a controlled gate and c ∈ H,
(a) If Tc > 0 add �Tc/2� S gates, and a T gate if Tc is odd, immediately to

the left of gate g on line c.
(b) Else if Tc < 0 add �Tc/2� S† gates, and a T † gate if Tc is odd, immedi-

ately to the left of gate g on line c.
(c) Set Tc = 0.
(d) Add an H gate on line c immediately left of gate g and remove c from

H.
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3. If g is a V or V † gate with target t:
(a) If t /∈ H add H,S, T gates as described in 2(a)-(d) above substituting t

for c.
(b) Put t into set H.

4. If g is a V gate,
(a) Add 1 to Tt and add 1 to Tc.
(b) Replace gate g with three gates CNOT-T †-CNOT using control c and

target t.
5. Else if g is a V † gate,

(a) Subtract 1 from Tt and subtract 1 from Tc.
(b) Replace gate g with three gates CNOT-T -CNOT using control c and

target t.
6. Else add H,S, T gates as described in 2(a)-(d) above substituting t for c.
7. Set g to the next gate to the right in the circuit. If there is no such gate the

procedure is done.
8. Go to step 2.

To illustrate the application of this algorithm, consider the reversible full
adder circuit in Fig. 1(a) [11]. Each Toffoli-CNOT pair is in fact a Peres [11]
gate. Figure 1(b) is an optimal NCV realization found by expanding the two
Peres gates and then canceling two gates [10]. The Clifford+T circuit shown in
Fig. 1(c) illustrates key features of the initial expansion process. The T gates
placed on the controls of the three V gates (1,2,3) are positioned as far right
as possible. Note that a T and T † gate cancellation coming from gates 3 and 5
occurs on line d and the T gates from gates 1 and 2 combine to form an S gate
which is again placed as far right as possible.

a • •
b • • •
c •
d

(a) a • •

b • •

c • •

d V V V V †

1 2 3 4 5 6

(b)

a • • • T

b • • T •

c • • T • • T†

d H T† T† T† T S H

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19

(c)

a T • T† •

b T • T†

c • T • • T† •

d H T† • • T • • S H

(d) a T • • T† •

b T • T†

c • T • • T† •

d H T† • T • S H

(e)

Fig. 1. Full adder
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T Gate Parallelization. T gate parallelization means moving T and T † gates,
each on a unique circuit line, to the same circuit level so that they can operate
in parallel. The objective is to reduce the T -depth of the circuit. We consider
three types of T and T † gate moves:

I. A T or T † gate that can be moved to the desired position unimpeded, i.e.
it can pass over all intervening gates with no additional gate movement or
alteration.

II. Moving the T or T † gate to the desired position requires moving one or
more CNOTs and/or requires that a CTC group be flipped.

III. A sequence of Type I and Type II moves is required to reposition a T or
T † gate.

Our approach to T gate parallelization is outlined below. Note that this al-
gorithm addresses only Type I and Type II moves. Type III moves are applied
afterwards. Several illustrative examples are given in the next section.

T Gate Parallelization Algorithm. Let n be the number of qubits (lines) in
the circuit.

1. Start at the leftmost CTC structure in the circuit.
2. Let p be the position of the T or T † in the CTC structure.
3. Set X1i to be the position of the leftmost T gate that can be moved to

position p on line i by a Type I move. Set X1i = ∅ if no such T gate exists.
4. Set X2i to be the set of the positions for all T gates that can be moved to

be in position p on line i (the set may be empty). Note that in doing this
each CTC structure is entered twice as it can be moved flipped or unflipped,
i.e. the T or T † can end up on one of two possible lines.

5. Let t be the target line and c be the control line in the CTC being considered.
If X1t �= ∅ and X1c = ∅, flip the CTC structure; otherwise set X1t = ∅.

6. For each line i, if X1i �= ∅ move the T or T † gate from position X1i to
position p on line i (a Type I move) and set X2i = ∅.

7. For each line i, if X2i �= ∅ move the T or T † gate from position j to position
p on line i (a Type II move) where j is the position of the leftmost gate
identified in X2i. Remove j from any other X2k, k > i.

8. Go right to the next CTC structure and go to step 2. If there is no such
structure, the procedure is done.

As an example, applying our T gate parallelization approach to the circuit in
Fig. 1(c) yields the circuit in Fig. 1(d). First, the left parallelization is accom-
plished by moving T gates from positions 18, 11 and 13 left on lines a, b and c
respectively using Type I moves. Second, the right parallelization requires the
gate groups (5,6,7) and (8,9,10) to be flipped and then gates 8 and 9 have to be
shifted left. The group (15,16,17) then has to be shifted into position by a Type
II move. To do that requires gate 14 to be moved left which requires gate 14 be
moved past gate 12 (recall that gate 13 has already been moved to the left paral-
lelization). Moving gate 14 past gate 12 creates the CNOT(a;c) gate in Fig. 1(d).
Lastly, the T † gate in position 18 is moved left to join the parallelization.
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CNOT Reduction. A circuit composed solely of CNOTs is a linear reversible
circuit. As can be seen in Fig. 1, a Clifford+T circuit typically has a number of
linear subcircuits. It is thus useful to consider optimization of a circuit of CNOT
gates.

As shown in Patel et al. [12], this problem can be expressed in terms of
operations on a matrix over GF(2). In particular, the operation of a CNOT gate
can be expressed as a matrix row operation. In particular, the operation of a
CNOT with control α and target β corresponds to replacing row β by the mod-2
sum of rows α and β.

For example, consider the 6 CNOT gates between the two T gate paralleliza-
tions in Fig. 1(d). Starting from a 4× 4 identity matrix and applying (α, β) row
additions in the order (c, d), (b, c), (a, c), (d, a), (d, b), (c, d), corresponding to the
6 CNOTs gates from the adder, yields the matrix in (2). This matrix represents
the functionality of the 6 CNOTs. The problem here is to determine if there is
a more efficient CNOT circuit performing the same functionality.

⎛
⎜⎝

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎞
⎟⎠ (2)

One approach is to use Gaussian elimination over GF(2). This is typically
not optimal. Patel et al. [12] have given a method that is typically more effec-
tive in terms of CNOT count but is not always optimal. For example, applying
their method to the matrix in (2) yields a circuit that can be further reduced
using Property 7. Also, the Patel method was not designed to take advantage of
levelizing CNOTs, i.e. positioning two or more CNOTs into one circuit level.

CNOT Optimization Algorithm. Given a 0-1 matrix M , let Mi denote the
ith row of M and let |Mi| denote the number of 1’s in that row. Our method
proceeds as follows:

1. SetX = ∅. (Note: The setX is key to making choices that allow levelization.)
2. If M is the identity matrix, go to step 10.
3. For all possible pairs, find the pair (α, β) such that α /∈ X , β /∈ X and

|Mβ|−|Mβ+Mα| is maximal, and there is a 1 in the β position in |Mβ+Mα|
where the addition is modulo 2.

4. If the maximum value found in step 3 is 0, apply the Patel et al. method [12]
to M to complete the solution.

5. If no (α, β) is found in step 3, set X = ∅ and go to step 2.
6. If an (α, β) is found in step 3, add a CNOT with control α and target β to

the solution. Note that the gates are generated in order from right to left.
7. Replace Mβ by Mβ +Mα where the addition is modulo 2.
8. Add α and β to X .
9. Return to step 2.
10. Property 7 is systematically applied to further reduce the number of CNOTs.

Applying the above method to the matrix in (2) yields the (α, β) sequence:
(a,b), (c,d), (d,a), (b,c), (a,b), (c,d) which corresponds to the CNOT sequence
shown in Fig. 1(e). Note that while there are 6 CNOTs in both circuits,
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the sequence in Fig. 1(d) requires 5 levels, while the sequence in Fig. 1(e) requires
only 3. Using CNOT reduction, the CNOTs at the right end of Fig. 1(d) can
also be reduced as shown in Fig. 1(e) saving one level in the circuit. The circuit
in Fig. 1(e) is the same as identified in [3, 16].

4 Examples

In this section we provide a number of examples to illustrate the application of
our approach. In particular, these examples illustrate certain aspects of optimiz-
ing T gate parallelization not illustrated in the full adder example.

Toffoli Gate with Two Controls. It is well-known [4] that the 2-control
Toffoli gate depicted in Fig. 2(a) can be realized by 5 NCV gates as shown in
Fig. 2(b). Figure 2(c) is found by expanding the V and V † gates in Fig. 2(b) to
Clifford+T gates. Note that the H gates that would fall between gates 1 and 3
and between 3 and 5 cancel as do a T from the expansion of gate 1 and a T †
from the expansion of gate 3 on line c.

The next step is T gate parallelization. Gates 1e and 5d can be moved to be
above gate 1c using Type I moves since there are no intervening CNOT targets
or H gates. Similarly, gate 3d can be moved above 3b as a Type I move. Gate 5b
is moved above 3b by a Type II move. In particular, the gate group (5a,5b,5c)
is flipped and then the gates are moved into the positions shown in Fig. 2(d).

The circuit in Fig. 2(d) has T -count 7, T -depth 3 and 12 levels. The number of
levels can be reduced by shifting gate 3d left; flipping the gate group (3a,3b,3c);
and then shifting gate 5e left. This yields the circuit in Fig. 2(e) which has 11
levels since gates 5a and 3d can be combined in a single level. Note that no
CNOT optimization is possible for this circuit. The T -count of 7 and T -depth
of 3 are optimal but a circuit with 10 levels has been found previously [16].

The Function a2x [2]. The function a2x can be realized by 2 Toffoli gates
as shown in Fig. 3(a). An NCV realization is shown in Fig. 3(b). Note that
the realizations for the Toffoli gates have been arranged so that a V from the
left Toffoli combines with a CNOT from the right Toffoli to yield the V † gates
marked by the arrow. This reduction is possible since a CNOT can be replaced
by two identical V † gates which then leads to a V -V † cancellation. Using the
initial expansion and T gate parallelization techniques in the manner described
in the above examples yields the circuit in Fig. 3(c).

Figure 3(d) shows twoCNOT optimizations. The 3 leftmost CNOTs in Fig. 3(c)
are reduced to 2. The 3 CNOTs between the right two T gate parallelizations are
also reduced to 2.

Figure 3(d) also shows the insertion of 2 identical CNOTs at positions 3 and
4. This is possible since they functionally cancel. The reason for the insertion is
so that the gate group (4,5,6) can be flipped and then moved to the positions
shown in Fig. 3(e) with the effect of reducing the T -depth by 1. There is also a
resulting CNOT reduction shown in Fig. 3(e). The gates in position 1 and 2 have
been interchanged which results in the gate from position 3 being eliminated.
Our final circuit has T -count 12, T -depth 4 and circuit depth 20. The circuit
in [2] also has T -count 12 and T -depth 4. It has 23 levels.
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a •
b •
c

(a) a • • •

b • •

c V V † V

1 2 3 4 5

(b)

a • • • • T

b • • T • • T†

c H T† T T† T H

1a 1b 1c 1d 1e 2 3a 3b 3c 3d 4 5a 5b 5c 5d 5f

5e

(c)

a T • T† •

b • T • • T† •

c H T† • T • T H

1a 1b 5d 1d 2 5a3a 5b 3c5c 4 5f

1e 3d 5e

1c 3b

(d) a T • T† •

b • T • T† T

c H T† • • T • • H

1a 1b 5d 1d 2 5a 3d 3a 5b 3c 5c 4

1e 3b 5f

1c 5e

(e)

Fig. 2. 2-control Toffoli gate

a •
b • •
c •
d

(a) a • • •

b • • • •

c V V † V † • •

d V † V V

↑

(b)

a • • T • •

b T T† • T • •

c H • T† • • T† • H • T† • • T •

d H T T† T T† H

(c)

a • T • • • •

b T T† • T • • •

c H • T† • • T† • H • T† T •

d H T T† T T† H

1 2 3 4 5 6

(d)

a • T • T†

b T • • T • • • •

c H • T† • • T† • H • T† T •

d H T T† T T† H

2 1 4 5 6

(e)

Fig. 3. a2x
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The Function a3x [2]. The Toffoli gate circuit for ax3 is shown in Fig. 4(a).
Note that this circuit implements the 3-control Toffoli gate TOF(a, b, c; e) using
d as an ancillary line. The mapping to NCV gates we use is shown in Fig. 4(b).
Note that the mapping for the 2 Toffoli gates with target e are chosen so that a
total of 4 NCV gates, 2 from each Toffoli, cancel, so each Toffoli maps to 3 gates.
Likewise, the 2 Toffoli gates with target d are mapped so that 2 CNOTs cancel
so that each of these Toffoli gates is mapped to 4 gates. The V /V † assignment
for the rightmost Toffoli is chosen so that there are 3 V and 3 V † on line d which
heightens the opportunity for cancellations during the expansion process. This
mapping is, up to reordering, the NCV realization given in [13].

Figure 4(c) shows the Clifford+T circuit after T gate parallelization is almost
complete. This circuit has T -depth 9. However by doing the following in order:
flipping the gate group at (10,11,12); moving the T † from position 16 to position
11; flipping the gate group at (15,16,17) and then moving the T † from position
18 to position 16, the T -depth can be reduced to 8. Note that gates (1,2,3) in
Fig. 4(c) become gates A,2 in Fig. 4(d). Likewise, gates (4,5,6) become 6,4 and
gates (7,8,9) become B,8. These changes are the result of CNOT reductions.

Our final circuit has T -count 18 and T -depth 8 with circuit depth 33. Amy
et al. [2] give a circuit for a3x with T -count 16 and T -depth 8. Their circuit has
circuit depth 40. Which of the two circuits is truly better will likely be technology
dependent. The fact they have the same T -depth makes the reduction from 40
to 33 circuit levels attractive.

The Function 3 17. Our final example is known as 3 17 [19]. The NCV circuit
is shown in Fig. 5(a). Fig. 5(b) shows the circuit after the Type I and Type II

a • V † V V † • •

b • • • •

c • • V † V † V

(a)

a • H T • • T† • • H • T† • • T •

b • T† • T T • S†

c T • T† H • T† • T T† H

(b)

a • H T • • T† • • H • • T† • T •

b • T† • T T • • • S†

c T • T† H • T† • T T† H

1 2 3 4 5 6 7

(c)

a • H T • • T† • • H T • • T • •

b • T† • T T • T† S†

c T • T† H • • T† • • T† H

(d)

a • H T • T† • • H T • T • •

b • T† • T T • T† S†

c T • T† H • • T† • T† H

(e)

Fig. 5. 3 17
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moves in the T gate parallelization phase. The circuit in Fig. 5(c) is derived from
the one in Fig. 5(b) by moving the T † gate into position 6 and adding the two
CNOTs in positions 4 and 5. The gate group (1,2,3) can be flipped and moved
left and the gate group (5,6,7) can be flipped and moved right. Doing both of
those operations yields the circuit in Fig. 5(d) with T -depth 4 rather than 5.
CNOT reduction then yields the final circuit, Fig. 5(e).

5 Conclusion and Future Work

In this paper, we have presented a method for mapping an NCV circuit to a
Clifford+T circuit. Several examples were presented to illustrate the approach.
The results show that the method is promising as it produces results comparable
to earlier methods.

More work is required to determine how effective the method will be for
larger NCV circuits. The methods presented are heuristic and further study is
required to determine if the choices made are in fact the most effective. It would
be most interesting to look at the integration of our methods with the matroid
partitioning approach due to Amy et al. [3], particularly our CNOT optimization
approach.

In this paper, we have assumed that gates can be applied in parallel, i.e. at the
same circuit level, if they involve different qubits. Depending on the technology,
a different assumption may apply. For example, the nearest neighbour constraint
requires that the target and control for a controlled gate must be adjacent cir-
cuit lines [7]. In that case, the CNOT optimization phase of our approach must
be modified or another appropriate nearest neighbour CNOT optimization tech-
nique [1,6,8] can be applied. Other constraints may apply for other technologies
and again the CNOT optimization phase must be appropriately adjusted. The
initial expansion and T -gate parallization phases are not affected.

H gates are particularly problematic for our approach since they put limits
on the movement of other gates in the circuit and can affect the ability of our
methods to optimally parallelize T gates. Work to limit or to judiciously place H
gates would be valuable. In addition, it is not clear that minimal NCV circuits
are the best starting point since non-minimality may in some instances lead to
better H gate placement.
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