
Automating the Translation of Assertions
Using Natural Language Processing Techniques
Mathias Soeken1,2 Christopher B. Harris3 Nabila Abdessaied2 Ian G. Harris4 Rolf Drechsler1,2

1 Department of Mathematics and Computer Science, University of Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

3 Department of Electrical and Computer Engineering, University of California, Irvine, United States
4 Department of Computer Science, University of California, Irvine, United States

{msoeken,nabile,drechsle}@cs.uni-bremen.de christopher.harris@uci.edu harris@ics.uci.edu

Abstract—In order to verify natural language assertions from a
specification automatically, they need to be translated into formal
representations. This process is error-prone and can lead to a
product that does not meet the initial intentions. We automate this
process by first partitioning all assertions into subsets based on
sentence similarity and then providing a translation template for
each subset which must be completed by the designer. Since many
assertions are described by similar sentences, the number of man-
ual translation steps can be decreased significantly. We evaluated
our approach by translating English constraint sentences from
an industrial specification into SystemVerilog assertions.

Index Terms—Design automation, Natural language process-
ing.

I. INTRODUCTION

Verification is not easy. As system complexity has increased
with the advent of Systems-on-Chip (SoC) we have seen
functional verification move from an informal activity com-
pleted by design engineers, to a distinct activity undertaken by
verification engineers, to an activity that often dominates the
design cycle. It is widely accepted that verification activities
can take up to 60% of the design cycle in a modern SoC.
However, while the systems we must verify are getting more
complex the cost of getting it wrong continues to increase.
The continued increase in manufacturing costs for integrated
circuits provide strong incentive to find as many design errors
as possible before a lithographic mask set is generated. The
problem is tougher and the stakes are higher than every before.

One technique used to address this growing problem is
Assertion Based Verification (ABV). Assertions have been
used for years to help verify complex software systems. In
recent years, verification languages such as SystemVerilog
have been extended to include support for hardware assertions
which allow greater observability, controllability, and can
reduce verification effort. One study reported up to a 50%
reduction in verification effort through the use of ABV [1].

However, ABV alone is not a panacea for the verification
problem. As important as how to verify a design is the
question of what to verify. The accurate conversion of a design
specification into a set of assertions can result in the detection
of hard to catch bugs. The manual translation of large numbers
of requirements into formal assertion statements can be an
error prone process. Malformed assertions can result in lost
time and cause verification errors [2].

To assist in the process of efficiently generating well defined
assertions we propose a technique to automatically extract
assertion-type information written in English from a system
specification. Even though a specification contains substantial
linguistic variation, sentences containing Natural Language
Assertions (NLAs) tend to exhibit grammatical similarities
based on the type of property check the sentence is describing.

These NLAs can be automatically grouped into clusters of
sentences of similar linguistic structure, where each NLA in
the cluster can be described by an archetypical SystemVerilog
Assertion (SVA). This archetypical assertion template can
then be used to automatically generate a specific and correct
assertion statement for each NLA in a cluster. Consider the
following sentences: “REQUEST is only permitted to change
from HIGH to LOW when ACKNOWLEDGE is HIGH”, and
“ACKNOWLEDGE is only permitted to change from LOW
to HIGH when REQUEST is HIGH”. Although the specifics
differ, both NLAs display a similar sentence structure and both
describe an assertion check where a signal is only allowed to
toggle from one specified state to another when a different
signal is asserted.

Using our technique, a verification engineer tasked with
generating assertions for dozens of requirements in a typical
specification would only need to generate a small number
of archetypical assertion templates which are then used to
automatically generate a full set of assertions. This not only
reduces the potential for errors in the translation of large
numbers of English language requirements to formal assertion
statements, but notably reduces verification effort. It also has
the benefit of allowing a verification engineer to expend a
larger percentage of time generating checks for difficult to
verify conditions such as corner cases, thus improving overall
verification quality.

In Section 2 we will outline the overall flow of our
technique. Sections 3 and 4 will discuss the dependency
representation used to characterize sentences in terms of
their grammatical structure, and our information extraction
algorithm which utilizes triple store databases to identify and
extract property information from target NLAs. Section 5 de-
tails the implementation of our assertion translation technique
while Section 6 evaluates that implementation using a design
document for a modern bus specification. We discuss our

results in Section 7 and compare our technique to related work
in Section 8 before summarizing our conclusions in Section
9.

II. PROPOSED FLOW

Fig. 1 illustrates the general flow of the proposed approach.
The starting point is a set of NLAs given in terms of
English sentences (indicated in the figure by zigzag lines).
These assertions are automatically partitioned into subsets of
high abstraction level and low abstraction level assertions in
the first step. The idea is that high level assertions contain
implicit and imprecise information which impedes automatic
translation and therefore need to be translated manually as in
the conventional flow. Consequently, high level assertions are
not further considered in the remainder of the flow.

In the second step the determined low level assertions
are partitioned into clusters of similar sentences. For this
purpose, a metric for sentence similarity is defined based on
the grammatical structure of the sentence and the semantics of
some words. Each cluster is represented by a graph structure
that represents the general structure of the sentences and stores
the words which are variable for all sentences in the cluster.

The third step is a manual step in which the designer has to
define transformation rules for each cluster. The transformation
rule can be described in terms of a formal property (indicated
by solid lines) that also contains variables similar to those
in the general structural graph of the cluster. Once such a
rule is defined, all sentences of the corresponding cluster
can automatically be translated to assertions by extracting the
variable words from the sentence and inserting them into the
respective placeholders in the formal property.

The proposed flow can be as good as or better than the
conventional flow. It cannot be worse when comparing the
number of translation steps that must be performed manually.
In the worst case the proposed flow does not detect any low
level assertion or the partition contains only clusters of exactly
one element. In this case each assertion needs to be translated
manually as in the conventional flow.

We conjecture that the proposed flow is robust although the
given set of initial assertions can vary significantly depending
on the input specification. However, although it is likely that
different specifications have individual writing styles for de-
scribing assertions, the style usually does not vary significantly
within the same specification. Consequently, the likelihood of
getting a favorable partition of low level assertions is high.

III. DEPENDENCY REPRESENTATION

Our approach uses the grammatical structure of each sen-
tence in order to partition the sentences into similar groups,
and to extract key information from each sentence which is
used to create SVAs. In order to represent the grammatical
structure of each sentence we use the Stanford typed de-
pendency representation [3] which is generated automatically
by the Stanford Natural Language Parser [4]. A dependency

all assertions

high level
assertions

low level
assertions partition formal properties

rule

rule

rule

informal automatic
formal manual

Fig. 1. Proposed flow

cop(HIGH, be)
nsubj(HIGH, X)
aux(HIGH, must)

(a) Textual form

HIGH

must

aux

be

cop

X

nsubj

(b) Graphical form

Fig. 2. Dependency representation

representation of a sentence is a set of binary ordered gram-
matical dependencies between pairs of words. The representa-
tion was designed to capture dependency relations which are
semantically meaningful for a range of information extraction
problems.

An example of a dependency representation is shown in
Fig. 2(a) and Fig. 2(b) which show the representation of
the sentence “X must be HIGH” in textual and graphical
forms respectively. The sentence uses a copular verb “be”
to relate the sentence subject, “X”, to the complement of
the verb, “HIGH”. The sentence also contains an auxiliary
“must” which modifies the verb. The three dependencies in
Fig. 2(a) show all of these grammatical relationships. The first
dependency cop(HIGH, be) is the copula relationship between
the complement of a copular verb and the copular verb. The
second dependency nsubj(HIGH, X) relates the complement
of the copular verb with the subject of the sentence. The third
dependency aux(HIGH, must) relates the complement to the
auxiliary.

A Typed Dependencies Graph (TDG) G can be formally
defined as a 4-tuple (V,E, r, s) where V is a set of vertices
which represent the words in a sentence, and E is a set of
directed edges which represent the dependencies between the
words. Each edge e = (g, d) ∈ E has a governor g which is its
predecessor vertex, and a dependent d which is its successor
vertex. Each edge e ∈ E is also assigned a relation type r(e)
which is the type of dependency represented by the edge.
Each vertex v ∈ V is associated with a string s(v) which
is the word in the sentence represented by the set of vertices.
The function tdg yields a TDG G for a sentence S and we
write G = tdg(S).

One reason that we use the Stanford dependency represen-
tation is that the relations it contains are easy to understand
and useful in implementing the partitioning and information
extraction tasks which we perform. Sentences can be grouped
into partitions based on the number of dependencies which

HIGH

HIGH

If

mark

X

nsubj

is

cop

advcl

Y

nsubj

must

aux

be

cop

Fig. 3. Canonical dependency representation for two different sentences

their representations have in common, and key information can
be extracted by examining the arguments of selected relations.
For example, the sentence “X must be HIGH” should generate
an assertion containing a comparison operation “==” between
X on the left-hand side and 1 on the right-hand side. Sentences
of this general form can be converted into SystemVerilog by
using the second argument of the nsubj relation on the left-
hand side of the assertion, and using the first argument of the
nsubj relation to compute the right-hand side.

Another important reason for using the Stanford depen-
dency representation is its canonicity in the presence of a
large degree of linguistic variation. The techniques used to
generate the dependency representations are robust and can
identify dependencies even when the grammatical structures
of the sentence are reordered. In other words, there can exist
two sentences S1 6= S2 such that tdg(S1) = tdg(S2).
An example can be seen in the representations of the two
sentences S1 = “If X is HIGH, Y must be HIGH” and S2 =
“Y must be HIGH if X is HIGH.”. These two sentences have
the same semantic meaning but the ordering of the phrases, “X
is HIGH” and “Y must be HIGH” is different. The dependency
representations of these two sentences is the same, independent
of the ordering of their constituents, as illustrated in Fig. 3. The
ability of the Stanford dependency representation to capture
grammatical relations independent of ordering is essential
to process a wide range of writing styles used by different
possible authors. In order to further increase the robustness of
our algorithms with respect to linguistic variation we apply
preprocessing steps to both the sentences and resulting typed
dependency graphs.

IV. DATABASE BASED INFORMATION EXTRACTION

In order to implement our algorithm we additionally pro-
pose an information extraction technique that makes use of
databases. The idea is that for a given sentence a database is
extracted that contains a variety of linguistic information about
the sentence. We make use of triple store databases which are
represented as sets of 3-tuples, where each 3-tuple represents
how two entities relate to each other. Information extraction
is then performed by applying a query to the database which
captures the type of information that should be extracted. The
specified information can then be extracted from the query
result.

Example 1: Given the three sentences “X must be HIGH”,
“Y must be LOW”, and “X is not equal to Y”, the task is

to extract signal names and their required value from the first
and second sentence. The third sentence does not match.

Natural language processing techniques, e.g. those provided
by the Stanford Parser are used to construct the database.

Example 2: The database for the first sentence of Example 1
contains the following triples:

<HIGH-4> aux <must-2>
<HIGH-4> cop <be-3>
<HIGH-4> nsubj <X-1>
<X-1> word "X"
<must-2> word "must"
<be-3> word "be"
<HIGH-4> word "HIGH"
...

Notice that for each word in the sentence a word item exists as
an entity in the triple store. This is required since sentences
may contain a word more than once. The first three triples
represent the typed dependencies. The latter triples represent
word literals for each word.

The task described in Example 1 could have easily been
done with regular expressions as well, however, in this case
it would not be as robust compared to our proposed solution.
This is due to the canonicity of typed dependency represen-
tations as illustrated in the previous section. We chose the
SPARQL Protocol and RDF Query Language (SPARQL, [5])
in order to query the generated databases. SPARQL queries
consist of triples as they are found in the database but allow
to use variables and additional constraints on these variables.

Example 3: In order to extract the signal/value pairs as
described in Example 1, the following query is created and
evaluated on each database that is generated for each sentence:

SELECT ?signal ?value WHERE {
?w4 aux ?w2. ?w4 cop ?w3. ?w4 nsubj ?w1.

?w2 word "must". ?w3 word "be".
?w1 word ?signal. ?w4 word ?value. }

Six variables are used in this query where only two of them are
global (?signal and ?value) appear in the result set which
is obtained after evaluating the query. The other three variables
are locally used and represent the corresponding word items in
this case. An evaluation algorithm tries to determine values for
the variables such that the triples can be found in the queried
database. The variables are used to link the triples.

If a query matches, a result set is returned that consists of
one or more assignments in which global variables are mapped
to precise values. In our work we use this information to derive
formal representations for natural language assertions.

V. ALGORITHM

The three steps of the proposed algorithm are described in
the next three subsections.

HIGH

X

nsubj

must

aux

be

cop

LOW

Y

nsubj

must

aux

be

cop

(a) Two typed dependency
graphs

?a2

?a1

nsubj

must

aux

be

cop

(b) Representative de-
pendency graph

Fig. 4. Partitioning of dependency graphs

A. Abstraction Level Classification

A good heuristic to determine the abstraction level of natural
language assertions heavily depends on the writing style of
the specification. As a result, a general heuristic cannot be
provided. Instead, we propose a classification method that
only requires one SPARQL query as input by the designer.
After a brief inspection of some assertions in the specification
the designer can determine common characteristics of low
level assertions, e.g. the use of some particular words or a
special formatting. The observations are described in terms of
a SPARQL query which is applied to each assertion. A knowl-
edge of the structure of the database and typed-dependency
graphs is necessary formalize such queries. An assertion is
classified low level, if and only if the query matches the
assertion. Furthermore, we require that an assertion contains
only one sentence.

B. Partitioning based on Sentence Similarity

1) Representative Dependency Graph: In order to deter-
mine similar sentences we make use of a Representative
Dependency Graph (RDG) which is a generalized description
of a set of TDGs. The generalization is performed by allowing
a subset of vertices to represent variables which can represent
any word. An RDG is a TDG G = (V,E, r, s) whose set of
vertices V is partitioned into two set, W , which represents
words in a sentence, and A, which are variables and may
represent any string.

Example 4: Fig. 4(a) shows the TDGs of the sentences “X
must be HIGH” and “Y must be LOW”. Fig. 4(b) shows an
RDG which describes the graphs of both sentences. The RDG
contains two variables ?a1, ?a2 ∈ A which match the name
and value, respectively.

That is, two sentences S1 and S2 are similar if they have the
same TDG when disregarding the words that are associated to
the vertices. In other words, given the sentences’ TDGs G1 =
(V1, E1, r1, s1) = tdg(S1) and G2 = (V2, E2, r2, s2) =
tdg(S2), we have G1 ' G2, i.e. there exists a graph isomor-
phism f : V1 → V2 where additionally the dependency rela-
tions need to be preserved, i.e., for each e1 = (u, v) ∈ E1 the
property r(e1) = r(e2) holds, where e2 = (f(u), f(v)) ∈ E2.

2) Pre- and Postprocessing: The partitioning step aims
at getting an as small as possible number of clusters. We

triggers

button

The

det

nsubj

signal

the

det

dobj

(a) Active voice

triggered

signal

The

det

nsubjpass

is

auxpass
button

the

det

agent

(b) Passive voice

Fig. 5. Writing active voice into passive voice

discovered that sometimes sentences are similar when reading
them but not by means of the definition above. In order to
still associate these sentences to the same subset we apply a
preprocess on the sentence and a postprocess on the TDG.

The preprocess aims at modifying words that might be
misinterpreted by the NLP parser. In the specifications we
have considered, often signal literals, e.g. 3’b101, or signal
names, e.g. LOW, have directly been used. The NLP parser
regards them as normal words. As a result, the literal is split
into two words separated by an apostrophe and the signal
name is sometimes detected as an adjective. In order to avoid
misinterpretation we applied preprocessing rules that remove
apostrophes in literals or insert double quotes around signal
names.

Graph rewriting in the postprocess step allows for remov-
ing unimportant words or transforming structures that are
semantically equivalent. In our implementation we applied
different postprocessing rules. One rule removes auxiliary
words, e.g. “the signal remains LOW” is treated equivalent
to “the signal must remain LOW”. Performing this step on
the graph level is advantageous compared to sentence level
because the word’s dependencies can be taken into account. As
an example, an auxiliary word is only removed when no other
words depend on it which is equivalent to being a sink vertex
in the TDG. A more complex postprocessing rule rewrites
phrases in passive voice into active voice as illustrated in
Fig. 5. After the auxiliary word in Fig. 5(b) has been removed
it remains to relate the edges nsubj and dobj of the graph
representing the active voice to the edges agent and nsubjpass
of the graph representing the passive voice, respectively.

Given a sentence S in the following we combine the prepro-
cessing step pre and postprocessing step post as process(S) =
(pre ◦ tdg ◦ post)(S).

3) Partitioning and Construction of the RDG: For the
partitioning and construction of the RDG we make use of a
data structure

CLUSTER(S1, . . . , Sn, w1, . . . , wm)

that represents one subset of the partition and stores a set of
similar sentences S1, . . . , Sn and a set of words w1, . . . , wm

that are common in all sentences. A word w is common if
for each pair of similar sentences Si, Sj , their TDGs Gi =
(Vi, Ei, ri, si), Gj = (Vj , Ej , rj , sj) and the induced isomor-
phism f as defined above, there exist one v ∈ Vi such
that w = si(v) = sj(f(v)). We match two TDGs by

starting at the root nodes and then recursively compare their
children. Since these graphs are typically small and also very
heterogeneous, i.e. varying node labels and edge weights, the
check for isomorphism is efficient.

The low level assertions are partitioned in a sequential
manner by checking for each processed assertion S whether
there already exists a cluster such that a graph isomorphism
can be determined. If this is the case, the sentence is added to
the cluster and the common words are adjusted by intersection
with the words from S. Otherwise a new cluster is created
where S is the only sentence and all words from S are
common.

Once the partitioning is completed and all clusters have been
obtained, a representative dependency graph is constructed for
each cluster CLUSTER(S1, . . . , Sn, w1, . . . , wm) by means of
a SPARQL query which structure is given as

SELECT ?a1,...,?a` WHERE {
?src(e) r(e) ?dest(e). // for each e ∈ E.
?v word s(v). // if ∃w ∈ W : w = s(v)
?v word ?ak. } // if @w ∈ W : w = s(v)

where (V,E, r, s) = process(S1) and W = {w1, . . . , wm}.
That is, first the TDG structure is resembled, secondly all
common words are asserted, and thirdly all variable words
are related to the remaining vertices. Applying this SPARQL
query to a triple store obtained from a sentence of the
cluster directly returns the non-common variable words in the
sentence.

C. Assertion Generation

Assertion generation occurs in two stages. First, an assertion
template is generated for each cluster. This template contains
variables in the positions where assertion specific information
such as signal names, logic levels, or numerical constants
would normally appear. If we recall the RDG from Fig. 4(b)
we can see that a generalized sentence can be intuitively con-
structed from the information in the graph. This generalized
sentence is representative of all sentences in a cluster. Using
this generalized sentence a designer or verification engineer
can manually design an appropriate SystemVerilog Assertion
template.

It is important to note that in a normal verification process
this mapping of English to a SystemVerilog Assertion would
occur dozens if not hundreds of times for a large design. In our
process it is only necessary once per cluster. The automation
inherent in our process affords the designer or verification
engineer the opportunity to apply their expertise where it will
be the most valuable, crafting fewer, higher quality assertions.

In the second assertion generation stage, the assertion
template is populated for each NLA in the cluster. Variables
are read from the typed dependency graph of each NLA.
These variables are combined with simple cluster specific
mapping functions in order to generate the unspecified values
for the assertion template. These mapping functions translate
the English language symbols for signal names, logic values,
or other verification parameters to their SystemVerilog equiva-
lents. This is often realized as a direct or very simple mapping.

This second stage results in a fully specified assertion for each
NLA in a cluster.

VI. EXPERIMENTAL EVALUATION

We have implemented the proposed algorithm in Java using
the Stanford NLP library for natural language processing tasks
and the JENA API for the triple store based information
extraction.

We applied the algorithm to the AMBA 3 AXI Protocol
Checker [6] user guide that consists of 145 natural language
assertions for the AMBA AXI 3 Protocol [7]. The next
subsection describes implementation decisions and the main
results of the evaluation.

Example 5: To illustrate the experimental evaluation we
make use of the following four example sentences from the
AMBA specification:

S1 AWID must remain stable when AWVALID is asserted
and AWREADY is LOW.

S2 A write transaction with burst type WRAP has an
aligned address.

S3 AWVALID is LOW for the first cycle after ARESETn
goes HIGH.

S4 BRESP remains stable when BVALID is asserted and
BREADY is LOW.

1) Abstraction Level Classification: We have prepared the
data for the experimental evaluation by first classifying all
assertions manually. These expected values were then com-
pared to the result of the classifier from which we computed
the accuracy A = TP+TN

TP+TN+FP+FN , the recall R = TP
TP+FN ,

the precision P = TP
TP+FP and the F-measure F = 2·P ·R

P+R ,
where TP, FP, TN, and FN refer to the number of true
positives, false positives, true negatives, and false negatives,
respectively.

We have discovered that most of the low level assertions
contain one of the signal names that were all listed in a
table in the specification. Further we discovered that many
local parameters are constrained. In Example 5, S2 is a high
level assertion, whereas all other ones are low level. We
have extended the triple store generation algorithm by storing
whether a word is a signal name in the database. For this
purpose, the predicate isSignalName has been used that
relates each word item to a truth value. The SPARQL query
provided to the classifier algorithm then checks whether a
signal name is contained or whether the word “parameter”
occurs. It reads:

SELECT ?signal ?someword WHERE {
{ ?signal isSignalName "true". } UNION
{ ?someword word "parameter". } }
From 145 assertions 100 have been classified as having a

low level of abstraction and are candidates for translation.
Numbers for each metric are listed in Table I.

2) Partitioning based on Sentence Similarity: For the parti-
tioning we have implemented all pre- and postprocessing rules
as described in Sect. V-B. This led to a partition of 11 clusters

TABLE I
EVALUATION OF THE CLASSIFIER

Metric Value Metric Value
Accuracy 93.01% Precision 95.00%
Recall 93.13% F-measure 94.06%

for the 100 assertions that have been asserted low level in the
previous step, i.e. each cluster contains of approximately 9
sentences on average. (Some more details about the clusters
are listed in the appendix.) In Example 5 the sentences S1 and
S4 belong to the same cluster which becomes evident after
the auxiliary words have been removed in the post processing
step. Sentence S3 belongs to a different cluster. In order to
understand the effect of the classification of the previous step
to the clustering we have also computed the partition based
on all 145 assertions. This lead to 50 clusters and therefore
about 3 sentences per cluster on average.

3) Assertion Generation: After partitioning the 100 NLAs
into 11 distinct clusters a set of 11 corresponding SystemVer-
ilog assertion templates were generated. These assertion tem-
plates are presented in Table II with the variables highlighted
in red. For each cluster mapping functions were also generated.
Two types of mapping functions were used. The “signal
name” mapping function simply passes the input value to the
output. The other mapping function used was the “logic level”
mapping function. This function maps an abstract logic level
such as HIGH or LOW to a logical 1 or 0 respectively. While
these mapping functions might at first seem superfluous, they
allow our technique much greater flexibility. By utilizing these
mapping functions our method can not only handle HIGH, and
LOW but also words such as asserted, deasserted and their
synonyms.

4) Assertion Translation Walkthrough: In this section we
will walk through an end-to-end example of our algorithm
as applied to a portion of a real data set. Recall Example 5
where four natural language assertions from [6] are presented.
Upon application of step 1 of the algorithm the sentences are
separated into high and low abstraction sentences. The low
abstraction sentences S1, S3, and S4 are supplied to the next
stage of the algorithm while the high abstraction sentence S2
is discarded from the translation set.

In step 2 the sentences are partitioned into clusters and
an RDG for each cluster is generated. The three remaining
sentences in our example are partitioned into two clusters
based on sentence similarity as determined by the RDG.
Sentences S1 and S4 are in one cluster while sentence S3 is
in a second cluster. In step 3 we will look at the translation of
sentences S1 and S4 while remembering that the steps outlined
will be performed for each cluster in turn.

Example 6: SVA Translations T1 and T4 which correspond
to sentences S1 and S4:

T1 assert property (@(posedge clock)
((AWVALID == 1) && (AWREADY == 0))
|->

$stable(AWID));

T4 assert property (@(posedge clock)
((BVALID == 1) && (BREADY == 0)) |->
$stable(BRESP));

We have now ascertained that sentences S1 and S4 are in the
same cluster and share an RDG, which was generated in the
previous step. We now manually construct the representative
sentence “a1 remain stable when a2 is a3 and a4 is a5”
for our cluster of interest. We also construct an appropriate
assertion template (see entry 8 of Table II). In this final stage
of the algorithm we read the variables for sentences S1 and S4
from their individual TDGs. The variables are applied to the
mapping functions and combined with the assertion template
resulting in the two fully realized SVAs shown in Example 6.

VII. THREATS TO VALIDITY

What happens if an assertion is classified wrongly? There
are two cases in which an assertion has been wrongly clas-
sified. If it has been classified high level although it is low
level, it needs to be manually classified after performing our
proposed flow together with the other high level assertions.
If it has been classified low level although it is high level, it
will likely end up as a single sentence in a cluster. Writing a
translation rule for a cluster with only one sentence is equal
to translating a high level assertion since no common words
can be extracted. Hence, a wrongly classified assertion cannot
cause any harm.

What if too many assertions are classified high level? In
the worst case all assertions are classified high level which
corresponds to the conventional flow in which all assertions
are manually translated into formal representations. Although
the proposed approach can therefore never be worse than the
conventional one, a bad classification result is nevertheless
unsatisfactory. In order to obtain a better result, the SPARQL
query for classification can be enhanced.

What if the number of sentences per cluster is too small? If
in the worst case each cluster contains only one sentence, the
proposed translation flow again performs equally compared to
the conventional one. In order to obtain larger clusters one can
inspect the assertions and add new pre- and postprocessing
rules to the partitioning step. However, one needs to assure
that sentences in same clusters still have the same meaning
and can be translated using a common translation pattern.

VIII. RELATED WORK

Related work can be divided into two groups, research
in assertion generation, and research in the use of natural
language processing for hardware design.

A. Assertion Generation

Approaches have been presented to automatically extract
assertions based on simulation traces using machine learning
techniques [8], [9]. The assertion is presented to the user (de-
sign/verification engineer) to determine whether the assertion
is a good candidate to make it into the design or whether the

TABLE II
ASSERTION TEMPLATES

Cluster SVA Template
1 assert property(@(posedge clock)<signal1> >= <value>);
2 assert property(@(posedge clock) (<signal2> == <value2>) |-> (<signal1> != <value1>));
3 assert property(@(posedge clock) (<signal1> == <value1>) |-> (##1 $stable(<signal1>) [*1:$] ##1 (<signal2> == <value1>)));
4 assert property(@(posedge clock) RESET != 1 |-> (<signal1> != <value>));
5 assert property(@(posedge clock) (<signal2> == <value2>) |-> (<signal1> != <value1>));
6 assert property(@(posedge clock) <signal2> == <value2> |-> ((<signal1> == <value1>) ##1(<signal1> == <value1>)));
7 assert property(@(posedge clock) ((<signal1> == <value1>) && (<signal2> == <value2>)) |-> (<signal3> == <value3>));
8 assert property(@(posedge clock) ((<signal2> == <value1>) && (<signal3> == <value2>)) |-> $stable(<signal1>));
9 assert property(@(posedge clock) (<signal1> == <vlaue1>) |-> ((<signal2> == <value2>) |-> (<signal3> == <value3>)));
10 assert property(@(posedge clock) (<signal2> == <value1>) |-> ##[1:<parameter1>](<signal1> == <value1>));
11 assert property(@(posedge clock) (<signal2> != <value3>) |-> !((<signal1> == <value1>) && (##1 <signal1> == <value2>)));

test should include additional cases to put the design in that
state via a new scenario case. The main challenge is in the
difficulty in learning all the sequences over time.

Reference [10] presents a methodology that uses the failing
assertion, counterexample, and mutation model to produce
alternative properties that are verified against the design and
serve to make possible corrections as they provide insight into
the design behavior and the failing assertion. The results show
that this process is effective in finding high quality alternative
assertions for empirical instances. However, the process is not
yet automated.

B. Natural Language Processing for Hardware

Researchers have generated partial hardware designs from
natural language specifications [11], [12] by identifying a set
of concepts expressed, together with a textual pattern for each
concept. Any sentence which matches a textual pattern can be
mapped to a structures in a design data structure defined by the
authors. The approach taken in [13] defines a grammar to parse
natural language expressions, and generates VHDL snippets.
In [14] an approach is presented that translates English spec-
ification sentences into temporal logic formulas for the SMV
model checker. Lightweight formal methods for the validation
of natural language requirements have been used in [15]
which allows consideration of partial specifications and partial
properties and therefore allows for a higher scalability. The
work in [14] and [15] focuses on the automatic translation of
English text to formal representations using natural language
processing techniques. However, in our work natural language
processing techniques are used to cluster requirements and the
actual translation remains a manual task.

More recently researchers have improved on the sophisti-
cation of NLP based analysis by relying on the semi-formal
structure of test scenarios described by acceptance tests [16]. A
UML class diagram is generated based on the entities referred
to in the scenario, and a UML sequence diagram is generated
from the sequence of operations described. Assertions have
also been generated from natural language using a special-
purpose attribute grammar [17]. These previous works directly
address the hardware verification problem by producing us-
able verification artifacts, namely UML sequence diagrams
and assertions. The work which we present in this paper is
distinguished from previous work [16], [17] in that our use
of clustering together with assertion templates exploits the

regularity in writing style commonly found in natural language
specification.

IX. CONCLUSIONS

We have presented an algorithm that automates the transla-
tion of natural language assertions into SystemVerilog Asser-
tions using natural language processing techniques. Instead of
manually translating each assertion separately, our approach
first splits assertions based on their abstraction level and then
partitions low level assertions into clusters based on sentence
similarity. Since typically a common writing style is being
used in one specification, the numbers in these clusters are
large, i.e. multiple assertions can be translated using the same
template, which significantly decreases the verification effort.
In order to implement our approach we have additionally pro-
posed an information extraction algorithm based on databases.
In an evaluation we have applied our approach to modern bus
specifications.

In future work we want to consider how the automatically
generated RDGs can be extended to be more generic. This
is particularly useful when reusing the translation templates
for other projects. As a result, once an assertion template
has manually been generated for a set of sentences in one
specification it can be reapplied in future specifications which
additionally decreases the verification effort.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry
of Education and Research (BMBF) (01IW13001) within
the project SPECifIC and by the German Research Foun-
dation (DFG) (DR 287/23-1) within a Reinhart-Koselleck
project.

REFERENCES

[1] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic generation of simulation checkers from formal spec-
ifications,” in CAV, 2000, pp. 538–542.

[2] L. Kof, “Natural language processing: Mature enough for requirements
documents analysis?” in NLDB, 2005, pp. 91–102.

[3] M.-C. de Marneffe and C. D. Manning, “The stanford typed dependen-
cies representation,” in CrossParser, 2008, pp. 1–8.

[4] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
typed dependency parses from phrase structure parses,” in LREC, 2006,
pp. 449–454.

[5] SPARQL 1.1 Query Language, W3C, Mar. 2013.
[6] AMBA 3 AXI Protocol Checker User Guide, r0p1 ed., ARM, Jun. 2009.
[7] AMBA AXI and ACE Protocol Specification, ARM, Oct. 2011.

[8] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. John-
son, “GoldMine: Automatic assertion generation using data mining and
static analysis,” in DATE, 2010, pp. 626–629.

[9] P.-H. Chang and L.-C. Wang, “Automatic assertion extraction via
sequential data mining of simulation traces,” in ASP-DAC, 2010, pp.
607–612.

[10] B. Keng, S. Safarpour, and A. Veneris, “Automated debugging of
SystemVerilog assertions,” in DATE, 2011, pp. 323–328.

[11] J. J. Granacki and A. C. Parker, “PHRAN-SPAN: a natural language
interface for system specifications,” in DAC, 1987, pp. 416–422.

[12] J. J. Granacki, A. C. Parker, and Y. Arena, “Understanding system
specifications written in natural language,” in IJCAI, 1987, pp. 688–691.

[13] W. R. Cyre, J. Armstrong, M. Manek-Honcharik, and A. J. Honcharik,
“Generating VHDL models from natural language descriptions,” in
EURO-DAC, 1994, pp. 474–479.

[14] A. Holt, “Formal verification with natural language specifications:
guidelines, experiments and lessons so far,” South African Computer
Journal, vol. 24, pp. 253–257, 1999.

[15] V. Gervasi and B. Nuseibeh, “Lightweight validation of natural language
requirements,” Software – Practice and Experience, vol. 32, no. 2, pp.
113–133, 2002.

[16] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in TOOLS, 2012, pp.
269–287.

[17] I. G. Harris, “Capturing assertions from natural language descriptions,”
in NaturaLiSE, 2013, pp. 17–24.

APPENDIX

A. Representatives for Low-level Clusters

The following list shows representatives for each of the
11 clusters that has been determined in the experimental
evaluation. Variable words are marked in bold font. The
numbers after the sentence refer to the number of sentences
in the corresponding cluster.

1) Parameter AWUSER WIDTH must be greater than or
equal to 1. [10]

2) A value of X on RDATA valid byte lanes is not
permitted when RVALID is HIGH. [1]

3) When AWVALID is asserted then it remains asserted
until AWREADY is HIGH. [5]

4) A value of X on AWVALID is not permitted when not
in reset. [13]

5) A value of X on AWID is not permitted when AW-
VALID is HIGH. [29]

6) AWVALID is LOW for the first cycle after ARESETn
goes HIGH. [5]

7) When AWVALID is HIGH and AWCACHE[1] is
LOW then AWCACHE[3:2] are also LOW. [1]

8) AWID must remain stable when AWVALID is asserted
and AWREADY is LOW. [28]

9) When ARVALID is HIGH, if ARCACHE[1] is LOW
then ARCACHE[3:2] must also be LOW. [1]

10) Recommended that AWREADY is asserted within
MAXWAITS cycles of AWVALID being asserted. [5]

11) CSYSREQ is only permitted to change from HIGH to
LOW when CSYSACK is HIGH. [4]

