
Towards Automatic Scenario Generation
from Coverage Information

Melanie Diepenbeck1 Mathias Soeken1,2 Daniel Große3 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
3solvertec GmbH, 28359 Bremen, Germany

{diepenbeck,msoeken,drechsle}@informatik.uni-bremen.de, grosse@solvertec.de

Abstract—Nowadays, the design of software systems is pushed
towards agile development practices. One of its most fundamental
approaches is Test Driven Development (TDD). This procedure is
based on test cases which are incrementally written prior to the
implementation. Recently, Behavior Driven Development (BDD)
has been introduced as an extension of TDD, in which natural
language scenarios are the starting point for the test cases. This
description offers a ubiquitous communication mean for both the
software developers and stakeholders.

Following the BDD methodology thoroughly, one would expect
100% code coverage, since code is only written to make the
test cases pass. However, as we show in an empirical study this
expectation is not valid in practice. It becomes even worse in the
process of development, i.e. the coverage decreases over time. To
close the coverage gap, we sketch an algorithm that generates
BDD-style scenarios based on uncovered code.

I. INTRODUCTION

As the name indicates, Test Driven Development (TDD, [1])
is a development technique driving the implementation where
tests are the essential elements. More precisely, for each
passing test, there must exist some implementation. However,
the opposite direction is not necessarily required, i.e. there may
be program code for which no test exists. Hence, it is likely
to be the case that programs written in a TDD manner are
not fully covered. In industry and academia some empirical
studies investigated the quality of using TDD and found out
that the testing coverage drops below 100% when the projects
are developed for a longer period of time [2], [3].

Extending TDD, Behavior Driven Development (BDD, [4])
uses natural language to describe acceptance tests thereby
easing the communication between designers and stakeholders.
The used BDD language terminology focuses on the behav-
ioral aspects rather than on testing. For this purpose, the test
structure borrows its ideas from user story specifications of
requirements engineering. These stories are called scenarios,
which describe specific examples of how the software should
work. Each scenario is written in a constrained natural lan-
guage and constitutes one test case. As a result, in every step of
the development cycle well-defined outputs are being specified
before implementing the software. In particular, due to its more
intuitive behavioral specification, it is a useful methodology for
Completeness-Driven Development (CDD, [5]) and therefore
the question is raised whether using BDD achieves a higher
or the same code coverage.

The contribution of this paper is twofold. First, we have
empirically evaluated BDD projects where we discovered that
full coverage is not achieved. We compare these observations
to reported coverage results of TDD. The studies on TDD
underline our assumptions. While the test cases ensure a high
coverage in early versions of the project, the coverage drops
over time as the project becomes more mature and the project
size grows. As a consequence, an increasing coverage gap
results.

To close this coverage gap, we sketch an algorithm for
generating test cases based on uncovered code. In doing so,
test cases are generated in a BDD scenario style by making
reuse of already existing step definitions.

The remainder of this paper is structured as follows: At
first Section II discusses related work. Background on BDD
is given in Section III. Our empirical study is presented in
Section IV while the proposed algorithm idea is presented in
Section V. Finally the paper is concluded in Section VI.

II. RELATED WORK

Automatic test generation is a widespread research topic for
software and hardware system design since defining good tests
is a time-consuming task.

In [6], [7], and [8] test data is generated from UML
specifications, in particular state diagrams. The authors of [9]
present another automatic test case generation approach based
on UML communication diagrams to target cluster level tests
which can be used to describe a story similar to the ones in
BDD. But generally these approaches generate tests from a
predefined specification while our algorithm considers only
the uncovered code parts in the development cycle and can
suggest missing test cases in each step.

In order to improve the test coverage, [10] presents a tool
that assists the programmer in determining for what code
parts tests need to be written and gives some hints on how
to exercise these. To achieve this it uses the program’s control
and flow graphs. But in contrast to our approach test cases
need to be written completely by the programmer.

There exist many random testing techniques such as [11],
which also incorporates feedback of executed inputs. Units are
generated from the source code, however, unlike our approach
the procedure is not trying to find missing test cases to achieve
a full coverage.

978-1-4673-6161-3/13/$31.00 c© 2013 IEEE AST 2013, San Francisco, CA, USA82

The generation of test data using model checking [12],
[13] is being actively investigated in research. After the
modeling step a model checker is applied, then the resulting
counterexamples are used to generate new tests. One example
for such a model checker is the Java PathFinder [14], which
can generate test cases by means of symbolic execution.

To the best of our knowledge the automatic scenario gener-
ation for BDD is the first approach that supports the developer
to complete her test set in an intuitive manner.

III. BEHAVIOR DRIVEN DEVELOPMENT

TDD is a design flow paradigm in which test cases are
provided as a starting point and as central elements along
the whole design process. First, all test cases are specified
such that they all fail initially without an implementation —
otherwise the test cases are not useful. Based on the error
messages obtained from the failing test cases, the designer
can extract feedback what needs to be implemented in order to
fulfill the tests. This process leads to an incrementally growing
implementation eventually leading to a system for which all
test cases are passing.

Tests can be specified in different abstractions, ranging from
low level unit tests that target very specific aspects of single
classes and their methods to integration tests that consider the
system as a whole. Based on the TDD design flow paradigm,
in particular for the integration tests BDD has been recently
proposed in which more coarse-grained tests are specified by
means of natural language targeting the behavioral level of
designing software.

In the context of this work, we will limit our observations
on BDD for Ruby [15] development. Two frameworks are of a
particular importance: Cucumber [16] and RSpec [17]. Note,
that the general flow can be applied to other programming
languages and BDD tools accordingly.

A. Cucumber

In Cucumber, the natural language specifications of the
test cases are strictly separated from the actual test code.
This allows different views on the tests, in which the plain
natural language description of test cases offers a ubiqui-
tous communication mean for both the software developers
and stakeholders. The natural language ensures a common
understanding of the system to be developed between all
partners of the project. All test cases are called acceptance
tests and structured by means of features or feature files, where
each feature can contain several scenarios. Each scenario
constitutes one test case and is based on the Given-When-Then
sentence structure, in which each sentence is referred to as a
step. This terminology is illustrated by means of an example
feature on the left-hand side of Fig. 1.

Consider the first scenario in the same figure. This scenario
originates from an advanced development stage of a submis-
sion system. It describes the submission of a paper to such a
system. However, in order to execute the scenario, we have to
bind the steps to actual test code. This can be achieved using
so-called step definitions which are tuples of a keyword (such

as Given, When, or Then), a regular expression, and test code.
Whenever a step of a scenario matches the regular expression,
the test code is executed. Some of the step definitions for the
scenario described above are formalized on the right-hand side
of Fig. 1.

Consider the first step definition that matches the first
step “Given I am an authenticated “author” user” from the
scenario in Fig. 1. Here, a new user of type “author” is
created for which the authentication procedure is performed.
For the remaining steps, the user selects the submission page
by following navigation links, enters the details of her new
submission to the system and submits the paper (When-step
and And-step). The correct behavior is checked by inspecting
the notification after the submission (Then-step).

As indicated in the second scenario of Fig. 1, the step
definitions can be reused for similar steps since regular ex-
pressions are used to match the steps. For example, the user
type “author” could be replaced by “chair” without modifying
the step definitions.

The step definitions are written before the implementation
phase has been started based on the scenarios given in natural
language. Thus, design decisions affecting the structure of the
implementation are taken while writing the test code for the
step definitions.

For the scenario at hand, it has been decided that there
needs to be a class for an authenticated User and a class
Submission that has operations for adding a new submission
to the database and presenting a notification to the user.

During the implementation phase, the test cases are usually
executed whenever the implementation changes, preferably
using a background task running autonomously. Each scenario
is run as a separate test case with no interaction to other
scenarios or features. Therefore for every test a clean starting
point can be identified which is the first step in a scenario.
When executing the test cases, steps can only fail due to two
reasons, i.e. syntactic and semantic errors. The first class of
errors occur whenever a name cannot be resolved, e.g. when
there is no class called User, or there is no method msg
available yet. The second class of errors consists of errors that
occur whenever values do not match their expectations. This
can only happen in assertions, i.e. step definitions such as the
second one given on the left side of Fig. 1. This is done with
the automatically loaded assertion library from RSpec, which
offers an intuitively syntax such as in the last step definition
using ‘should contain()’.

B. RSpec

RSpec is one of the first TDD frameworks that puts the fo-
cus on behavior. The programmer writes executable examples
of the desired behavior of a small parts of code in a controlled
context. In contrast to Cucumber, there is no strict separation
of the natural language part of the test and the test code itself.
Here is an example of the structure of an RSpec test case:

83

Feature: Submission
· · ·

Scenario: Add a new submission
Given I am an authenticated “author” user
When I select the submission page

And I submit all details for a paper

Then I get a succesful submission notification

Scenario: List all submission
Given I am an authenticated “chair” user

· · ·

Scenario

step

another step

Given /^I am an authenticated "([^\"]*)" user$/ do |user_type|

name = "example"

email = "example@example.com"

password = "secret!"

@user = User.new(name, email, user_type)
· · ·

end
· · ·

Then /^I get a successful submission notification$/ do
@submission.info.msg.should contain("Successful submission of")

end

Test code
Step
definition

Fig. 1. BDD definitions

describe SubmissionDatabase do
context "when first created" do
it "is empty" do

submission_database = SubmissionDatabase.new
submission_database.should be_empty

end
end

end

As for any BDD tool, RSpec also builds on simple examples
that express the basic expected behavior. RSpec embeds a
domain specific language that covers the description of the
behavior of an object. It consists of the three main methods
‘describe’, ‘context’, and ‘it’.

With the ‘describe’-method an example group, called
SubmissionDatabase, is declared which is used to bundle
the examples of the expected behavior of an object. In this
case a class SubmissionDatabase should be developed. The
‘it’-method identifies an example. In the given example the
behavior of the SubmissionDatabase is being described for the
case it is created for the first time.

The ‘describe’-methods can be nested in order to trace
different hierarchies of modules and classes. Another method
‘context’ can be used for structuring the desired behav-
ior better, although it is technically just an alias for the
‘describe’-method.

Applying the TDD approach, we would expect full code
coverage since there should never exists any implementation
code without writing a test for it first. Since BDD builds upon
the same principle we would expect the same results. In the
next section we are going to analyze code coverage of two
BDD projects.

IV. EMPIRICAL STUDY ON COVERAGE IN BDD PROJECTS

In this section we present an empirical study on coverage
achieved in BDD projects. Since in BDD projects the imple-
mentation of code is directed by acceptance tests, only code
that is necessary to make the tests pass should be written.
Hence, the expected coverage should be 100%. The main goal
of this evaluation is to investigate whether following the BDD
model leads to full coverage.

The section begins with the set up of the empirical study,
followed by a brief overview of the studied projects. Then
the empirical results for each of these project are presented
and discussed. Finally, we briefly address empirical results of
studies on TDD quality.

A. Approach

The empirical study for these frameworks observes code
coverage in the progress of development for each considered
project. As observation points, the individual versions of each
project have been taken. At each point, coverage measures
are applied and the original test cases are run again. In order
to find code parts that are never executed by any test case,
line coverage was used as coverage measure. The employed
coverage tool was SimpleCov 0.71.

B. Studied Projects

For the empirical study we evaluated two implementations
from GitHub2. GitHub is a collaboration platform that offers
Git as its revision control management system. Thus we only
considered projects that were driven by one (or both) of the
BDD frameworks Cucumber and RSpec. Both studied projects
are applied by a large community in their own software
projects.

1) Aruba: Aruba3, which is continuously being developed
for almost three years now, offers an extension to Cucumber
that is used for testing command line applications. It can be
easily integrated into any Cucumber project and offers many
new completely implemented step definitions for tests that
target command line interfaces. For example consider the step
‘When I run ’echo $1’’. When this step is executed,
the shell command ‘echo’ is called automatically. The step
does not need to be defined first.

2) Celluloid: The Celluloid4 project provides a developer
tool that simplifies building multi-threaded Ruby programs.
The main idea is a new data structure that is an active

1https://github.com/colszowka/simplecov
2https://github.com/
3https://github.com/cucumber/aruba
4https://github.com/celluloid/celluloid/

84

0.
1.
0

0.
1.
3

0.
2.
0

0.
2.
4

0.
3.
0

0.
3.
4

0.
4.
0

0.
4.
5

0.
4.
9

0.
4.
11

0
%

2
0

%
4
0

%
6
0

%
8
0

%
1
0
0

%

C
ov

er
ag

e
Aruba

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

L
ines

of
C

ode

Fig. 2. Coverage results for Aruba with Cucumber (add. RSpec in 0.4.9 ff.)

0.
0.
1

0.
1.
0
0.
2.
0
0.
2.
2
0.
5.
0
0.
6.
0

0.
7.
0

0.
8.
0
0.
9.
0

0.
10
.0

0.
11
.0

0.
12
.0

0.
12
.4

0
%

2
0

%
4
0

%
6
0

%
8
0

%
1
0
0

%

C
ov

er
ag

e

Celluloid

0
5
0
0

1
,0
0
0

1
,5
0
0

L
ines

of
C

ode

Fig. 3. Coverage results for Celluloid with RSpec

object which runs within a thread, called a “cell”. Celluloid is
continuously being developed for almost two years now.

C. Results

In this section we provide the results of our empirical
analysis. Figs. 2 and 3 present the line coverage results of
the implementations of Aruba and Celluloid. The blue bars
show the achieved code coverage after the execution of the
original test cases. The lines of code (LOC) are shown for
every version as an continuous line with the scale depicted on
the right side of the chart. As primary tendency it can be seen
that the line coverage for every project is almost always less

than 100%. When considering both projects independently,
some other observation can be made.

For Aruba, a trend towards a lower coverage can be noticed.
In the first versions the development team started with 100%
code coverage using Cucumber, which stayed the same for all
revisions of version 0.1. But when changing to version 0.2.0
the coverage dropped while the implementation code increased
by approximately 29%. The tendency of a decreasing coverage
remains during the development of Aruba for the subsequent
versions, although the coverage increases slightly in between.
The last three versions were not run with Cucumber as the
only testing framework but in combination with RSpec. They
started with two additional RSpec examples in version 0.4.9
and rose to eight RSpec examples in version 0.4.11. A closer
look at the number of Cucumber scenarios (70 in the last
version) shows that the RSpec examples take only a small
part in the testing task.

In comparison to Aruba, Celluloid shows a more constant
code coverage over time. The coverage is in the range from
86.36% to 95.54%. The highest coverage was achieved shortly
after the beginning of the development. When Celluloid had a
big version jump from 0.2.2 to 0.5.0 the coverage decreased
notably and the lines of code increased by approximately 43%.
In later versions the LOC stabilized and the coverage grows
a bit. Here some new test cases were added, which may be
the reason for the increasing code coverage. The number of
test cases in Celluloid increased from 26 in the beginning to
130 cases. In the last four versions, there were always 5 failing
test cases, that may also be responsible for the decreasing code
coverage in these versions.

In conclusion it can be said, that both projects show a
similar constant reduction of code coverage during the project
development time. In the first instances of the implementation
they have a high code coverage, which reduces over the
versions, while the implementation code for Aruba increased
almost nine times in the period from the first version to
version 0.4.11 and for Celluloid more than quadruples from
version 0.0.1 to version 0.12.4.

In the next section we revise other empirical studies based
on TDD which also made some coverage observations.

D. Studies on TDD

Since TDD can be seen as the predecessor of BDD and
both are using the test-first principle, coverage results on TDD
projects should also be considered.

In [18] three software development projects were realized
using TDD with semi-industrial settings in an empirical study.
These projects were compared with two iterative test-last
projects. Among other quality measures test coverage was
analyzed. In general TDD induced a higher code coverage
in method, statement, and branch coverage and achieved up
to 100% coverage. But this study lasted only 9 weeks, i.e. the
coverage results are comparable with our results for Aruba
and Celluloid when considering only the first few versions. If
projects run for a short period of time with TDD, they can
have a high test coverage.

85

Two industrial case studies were conducted for not less than
four months by Bhat and Naghappan [2]. The first project in
the case study reached a block coverage of 79%, while the
second one accomplished 88% block coverage using a unit
test approach with TDD.

The test cases in the experiment in [3] received a mean
of 98% method, 92% statement, and 97% branch coverage.
Method coverage ranged from approximately 72% to 100%,
similar to the results obtained with Aruba in our experiments.
While these coverage results are very high, the resulting
application was very small with about 200 LOC in Java.

None of these studies analyzed how the code coverage
changes over time, but they show a similar result to our study
on BDD projects. When a product is developed with TDD or
BDD for a short period, a high code coverage is achieved.
But when the development time progresses, coverage often
falls below 80%. One of the reasons for this coverage drop is,
that developer start writing additional code while adding code
to fulfill a certain test case. However, for the additional code
no acceptance test is written afterwards. In the next section
an approach is presented that will help the developer to close
this coverage gap.

V. COVERAGE-DRIVEN SCENARIO GENERATION

Based on the investigations presented in the previous sec-
tions, this section illustrates an approach that automatically
generates Cucumber-style scenarios based on uncovered code.
We are only considering line coverage thus far. In order
to obtain a testset that fully covers the implementation, we
envision a two-stage approach. In the first stage, referred to
as global coverage in the remainder, all uncovered methods
are targeted such that at least all methods are called by
the test cases. Afterwards, the remaining uncovered lines are
separately considered in a local coverage stage. In this local
coverage stage, we can always assume that we can start the
execution from the method’s entry point which is ensured after
a successful application of the global coverage stage.

A. Global Coverage Stage

We are interested in high level test cases ensuring a global
coverage. As a consequence, scenarios rather than explicit
execution traces should be obtained which seamlessly integrate
into the BDD-based design flow using tools such as Cucumber.
The general idea how to obtain such a scenario is illustrated
in Fig. 4. The goal is to generate a test case that covers
the uncovered code, depicted by means of the solid circle in
the cloud. For this purpose, we try to reuse already existing
steps from other scenarios. Hence, the algorithm is aiming
to approach the uncovered code as close as possible using
consecutive calls of existing steps starting from an initial point.
Obviously, no step exists that reaches the uncovered code,
therefore, a new step needs to be created for the last step.
According to the illustration in Fig. 4, the user will be offered a
generated scenario as exemplary depicted in Fig. 5 (following
the example of Section III). Aside from existing steps that

Program

uncovered
code

Starting Point
(INIT)

Step 1 Step 2

New Step

Fig. 4. Approaching uncovered code using step definitions

can be reused, the new step calling the method and a Then-
step (assertion step) containing a useful assertion must be
added by the developer. Since the new step often only consists
of the method call, in practical applications the new step and
the assertion step might be combined into a single step.

In order to automatically generate scenarios we introduce
the feature graph, a new data structure that captures all traces
based on the current set of features and their scenarios. The
feature graph is a graph whose vertices represent system states
and whose edges represent steps which occur in the features’
scenarios. An example of a feature graph is shown in Fig. 6.
A system state can be seen as an abstraction from the heap,
i.e. which objects are initialized together with their type and
the assignment to their attributes. For instance, after running
the first step of our first scenario from Section III an object of
type User with attributes type, name, etc. and an object of
type Page with its attributes are created. The size of the feature
graph is bounded by the number of steps in the features and
thus does usually not get too large. The start vertex of the
feature graph, called INIT, represents the initial state from
which each scenario is executed.

Given the feature graph, scenarios can be extracted from it
as follows. We start from an uncovered method m. Let T
be the type of the class in which m is defined. Now we
determine a vertex v from the feature graph which contains
an initialized object o of type T . This is a possible candidate
on which m can be called. T can be viewed as a precondition
to call the uncovered method m. If a method has parameters,
these can also be viewed as additional preconditions to call
the method m. This can be further generalized by allowing
other method preconditions to constrain possible candidates.

Now any path from INIT to v is a possible trace of steps
which represent the first part of the newly generated scenario
and the new step consists of the test code o.m, i.e. m is
invoked on o, followed by a user defined assertion step. The
quality of the generated scenario depends on the path that has
been taken. For this purpose, we have different strategies in
mind, e.g. taking the shortest path. To define better strategies
we can assign weights to the edges, e.g. how often a step has
been taken in all considered scenarios or the LOC of the test
code in a step.

86

Scenario: New Scenario
Given I am an authenticated “author” user
When I select the submission page

And New Step

Then Assertion Step

with

When /^ [New Step] $/ do
Insert your code here

This needs to be tested
@submission.edit(id)

end

Fig. 5. New automatically generated scenario

INIT

User Page
type=chair id=42
name=... ...

...

User Page
type=author id=42
name=... ...

...

User Page
type=author id=23
name=... ...

...

User Page
type=author id=24
name=... ...

...

Submission
authors={...}
title="Towards..."

...

Given I am an
authenticated “author” user

Given I am an
authenticated “chair” user

When I select the
submission pageWhen . . .

And I submit all
details for a paper

Then I get a succesful
submission notification

Fig. 6. Feature graph example

If no vertex can be found in the feature graph on which the
method can be invoked a new scenario is generated that does
not reuse any existing step but consists of only a new step
that both creates an instance of the necessary class and then
invokes the method on it followed by the assertion step.

B. Local Coverage Stage

Although all methods are covered, the test set may still
not be complete since some blocks inside a method have
not been covered. The local coverage stage considers these
uncovered parts. As an example, consider an if-then-else
statement in which all test cases visit only the then branch.
However, in order to tackle these types of uncovered code,
more sophisticated approaches are required than the approach
being used for global coverage. The global coverage approach
is efficient since it is based on a small data structure, which
helps to partition the hard cases into their respective methods.

Test cases can then be generated as follows. Given an
uncovered line l in a method m, we first determine a scenario
from the set of features that covers m. Having performed the
global coverage stage in advance, such a scenario must exist.

Starting from the method’s entry point, existing techniques
e.g. based on symbolic execution [14] are used in order to find
a trace that leads to l. For this purpose, it might be required
that parameters of m or global variables need to be adjusted.
Nevertheless, the coverage problems that occur in the local
coverage stage are more complex than the global coverage
problem and for some lines no execution trace may be found
efficiently.

VI. CONCLUSIONS

Although developing software with BDD (or TDD) is a
good method to cover a high percentage of code with tests,
putting the BDD model into practice is hard. In an empirical
study we found out that the coverage drops for projects with
long development periods. This observation can be explained
since in practice either additional code is added by the
developer while implementing code for fulfilling a certain test
case, or because code is implemented without adding a test
case at all. This observation is also confirmed by the fact that
the evaluated projects have a high coverage in the starting
phase of the project and drops after a certain amount of time.

Based on the results of the evaluations, we have proposed
an algorithm that is generating test cases based on uncovered
code. Moreover, these generated test cases are provided as sce-
narios and are therefore allowing for a holistic user experience
when working with a BDD-based design flow. The algorithm
separates the problem of finding test cases for uncovered
code into two stages in which the first stage ensures a 100%
method coverage. Using a new data structure, this stage can
be performed efficiently. The second stage then focuses on
uncovered code within methods, which is solved by making
use of existing techniques. However, the effort is reduced since
the first stage allows to consider this problem locally.

In future work, we want to formulate and implement the
proposed algorithm and evaluate it by applying it to various
projects, e.g. those presented in the study. In particular, we
are interested in evaluating different heuristics and strategies
on how to determine meaningful paths in the feature graph in
order to obtain useful scenarios for the developer. Furthermore
it is of interest to incorporate results from formal verifica-
tion [19].

ACKNOWLEDGMENTS.

This work was supported by the German Research Foun-
dation (DFG) within the Reinhart Koselleck project DR
287/23-1.

87

REFERENCES

[1] K. Beck, Test Driven Development. By Example. Amsterdam: Addison-
Wesley Longman, Nov. 2003.

[2] T. Bhat and N. Naghappan, “Evaluating the efficacy of test-driven de-
velopment: industrial case studies,” in Empirical Software Engineering,
2006, pp. 356–363.

[3] B. George and L. A. Williams, “A structured experiment of test-driven
development,” Information & Software Technology, vol. 46, no. 5, pp.
337–342, 2004.

[4] D. North, “Behavior Modification: The evolution of behavior-driven
development,” Better Software, vol. 8, no. 3, 2006.

[5] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne, H. M. Le, J. Seiter,
M. Soeken, and R. Wille, “Completeness-driven development,” in Inter-
national Conference on Graph Transformations, 2012, pp. 38–50.

[6] J. Offutt and A. Abdurazik, “Generating tests from uml specifications,”
in International Conference on the Unified Modeling Language, 1999,
pp. 416–429.

[7] S. Kansomkeat and W. Rivepiboon, “Automated-generating test case
using uml statechart diagrams,” in Annual Research Conference of
the South African Institute of Computer Scientists and Information
Technologists on Enablement through Technology, 2003, pp. 296–300.

[8] C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, “Test
Data Generation from UML state machine diagrams using GAs,” in
International Conference on Software Engineering Advances, 2007, pp.
47–52.

[9] P. Samuel, R. Mall, and P. Kanth, “Automatic test case generation from
UML communication diagrams,” Information and Software Technology,
vol. 49, no. 2, pp. 158–171, 2007.

[10] S. Horwitz, “Tool support for improving test coverage,” in European
Symposium on Programming, 2002.

[11] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in International Conference on Software Engi-
neering, 2007, pp. 75–84.

[12] P. Ammann, P. Black, and W. Majurski, “Using model checking to
generate tests from specifications,” in International Conference on
Formal Engineering Methods, 1998, pp. 46–54.

[13] A. Gargantini and C. Heitmeyer, “Using model checking to generate tests
from requirements specifications,” in European Software Engineering
Conference held jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 1999, pp. 146–
162.

[14] K. Havelund, “Java PathFinder, a translator from Java to Promela,” in
5th and 6th International SPIN Workshops on Theoretical and Practical
Aspects of SPIN Model Checking, 1999, p. 152.

[15] D. Flanagan and Y. Matsumoto, The Ruby Programming Language.
O’Reilly Media, 2008.

[16] M. Wynne and A. Hellesøy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. The Pragmatic Bookshelf,
2012.

[17] D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis, and
A. Hellesøy, The RSpec Book: Behaviour Driven Development with
Rspec, Cucumber, and Friends. The Pragmatic Bookshelf, 2010.

[18] M. Siniaalto and P. Abrahamsson, “A comparative case study on the
impact of test-driven development on program design and test coverage,”
in International Symposium on Empirical Software Engineering and
Measurement, 2007.

[19] M. Diepenbeck, M. Soeken, D. Grose, and R. Drechsler, “Behavior
driven development for circuit design and verification,” in High Level
Design Validation and Test Workshop, 2012, pp. 9–16.

88

