
Assisted Behavior Driven Development
Using Natural Language Processing

Mathias Soeken1, Robert Wille1, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen
Group of Computer Architecture, D-28359 Bremen, Germany
{msoeken,rwille,drechsle}@informatik.uni-bremen.de

2 Cyber-Physical Systems
DFKI GmbH, D-28359 Bremen, Germany

rolf.drechsler@dfki.de

Abstract. In Behavior Driven Development (BDD), acceptance tests
provide the starting point for the software design flow and serve as a
basis for the communication between designers and stakeholders. In this
agile software development technique, acceptance tests are written in
natural language in order to ensure a common understanding between
all members of the project. As a consequence, mapping the sentences to
actual source code is the first step of the design flow, which is usually
done manually.

However, the scenarios described by the acceptance tests provide
enough information in order to automatize the extraction of both the
structure of the implementation and the test cases. In this work, we pro-
pose an assisted flow for BDD where the user enters into a dialog with
the computer which suggests code pieces extracted from the sentences.
For this purpose, natural language processing techniques are exploited.
This allows for a semi-automatic transformation from acceptance tests
to source code stubs and thus provides a first step towards an automa-
tization of BDD.

1 Introduction

Historically, software testing has been a post-processing step in the classical
waterfall model. After the actual software has been created, usually a team of
test engineers writes test cases (e.g. unit tests) in order to validate the correctness
of the implemented code. In the movement of agile software engineering, the test
effort is already incorporated at an earlier point in the development process. In
particular, Test Driven Development (TDD) [1] employs so-called acceptance
tests as the starting point for the development process. These acceptance tests
represent all scenarios which have to be realized by the final system. While the
test cases fail initially before any code has been written, the desired software
system is considered complete (accepted) if all acceptance tests pass.

It has to be noted that acceptance tests are different from unit tests and are
not meant as an alternative. While unit tests check the correct implementation of
single atomic components in the software, acceptance tests check a scenario of the

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 269–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 M. Soeken, R. Wille, and R. Drechsler

system as a whole without considering how the system is actually implemented.
As a result, it is often summarized that a unit test validates that the software
does the thing right, whereas an acceptance tests checks whether the software
does the right thing [2]. Consequently unit tests are generally written by the
developers and the stakeholders will not take notice of them, whereas acceptance
tests are written by the stakeholders and are discussed with the developers as
part of the specification.

Recently, Behavior Driven Development (BDD) has been proposed [3] as a
result of problems that arose with TDD when applying agile software practices.
A major obstacle for programmers has often been to find a good starting point
or to determine which facets need to be tested and which not. As a result,
it has been noticed that the language used for describing the tests, i.e. class
names and operation names, plays an important role both for writing test cases
and for finding bugs in case of a failing test. Inspired by [4], for this purpose
BDD uses natural language as a ubiquitous communication mean to describe the
acceptance tests by means of scenarios. In fact, the natural language ensures a
common understanding of the system to be developed between all members of
the project – particularly between the designers and the stakeholders.

Based on the scenarios which are described by the acceptance tests, the de-
signers map the sentences to actual code by implementing the test cases and code
skeletons in the first step. Usually, this is a manual and thus time-consuming and
error-prone process. However, all the information that is necessary to perform
these steps is in principle already included in the natural description.

In this work, we propose a methodology which assists the designer in these first
steps by semi-automatically extracting design information from the sentences
using natural language processing techniques. We propose a design flow where
the user enters into a dialog with the computer. In an interactive manner, the
program processes sentence by sentence and suggests to create code blocks such
as classes, attributes, and operations. The user can then accept or refuse these
suggestions. Furthermore, the suggestions by the computer can be revised which
leads to a training of the computer program and a better understanding of
following sentences.

Using this new design flow, the following advantages arise.
– Having only scenarios described in natural language, the first steps towards

writing the overall structure of the whole system can be cumbersome. How-
ever, analyzing the scenarios step by step assisted by a computer program
allows for a smoother start into the design process.

– Descriptions in natural language bear the risk of misunderstandings, e.g. due
to ambiguities. These risks can be minimized when the description is parsed
by natural language processing techniques, because what a computer pro-
gram might misunderstand is also likely to be misunderstood by another
designer or stakeholder.

– Unlike previous work (cf. Sect. 6) where the result of the text processing is
given after the whole text has been parsed, our approach provides the user
with feedback after every sentence being parsed. As a result, the user can
retrace the decisions of the tool and intervene if necessary.

Assisted Behavior Driven Development Using Natural Language Processing 271

Telephone

wireless: Boolean
dial(number)

Receiver

activate()

1 1

(a) UML class diagram

:Telephone :Receiver

dial(6345789)

activate()

(b) UML sequence diagram

Fig. 1. UML class and sequence diagram

For the implementation of the proposed approach, we enhance the Cucumber
tool [2]. The sentences of each scenario are parsed and are transformed into actual
code required for the subsequent implementation of the system. Furthermore,
also user interactions are written in natural language as pre-defined background
scenarios inside the Cucumber tool, which lead to a seamless user experience.

We have evaluated our approach in a case study where we have used a candy
machine whose specification is provided by means of six use case scenarios in
natural language. Using only a few user interactions, it is possible to generate
the whole class diagram and test cases with the assistance of the computer. As a
consequence, the proposed flow allows for a semi-automatic transformation from
acceptance tests to source code stubs and thus provides a first step towards an
automatization of BDD.

The paper is structured as follows. The necessary background of method-
ologies used in this work is provided in the next section. Section 3 illustrates
the general idea while Sect. 4 gives a more detailed insight into the extraction
techniques. The results of the case study are presented in Sect. 5. Furthermore,
Sect. 6 discusses related work and conclusions are drawn in Sect. 7.

2 Preliminaries

In this work, the Unified Modeling Language (UML) is applied to represent the
code skeletons and test cases which are semi-automatically derived from natural
language. Besides that, we are also exploiting language processing tools. To keep
the paper self-contained, the underlying concepts of UML and the applied tools
are briefly reviewed in the following.

2.1 Unified Modeling Language

In this section, we briefly review the basic UML concepts which are considered
in this work. A detailed overview of the UML is provided in [5].

272 M. Soeken, R. Wille, and R. Drechsler

Class Diagrams. A UML class diagram is used to represent the structure of
a system. The main component of a class diagram is a class that describes an
atomic entity of the model. A class itself consists of attributes and operations.
Attributes describe the information which is stored by the class (e.g. member
variables). Operations define possible actions that can be executed e.g. in order to
modify the values of attributes. Classes can be set into relation via associations.
The type of a relation is expressed by multiplicities that are added to each
association-end.

Example 1. Figure 1(a) shows a UML class diagram specifying a simple tele-
phone. The class diagram consists of the two classes Telephone and Receiver.
The class Telephone has an attribute wireless of type Boolean. The receiver is
related to the telephone which is expressed by an association. As expressed by
the multiplicities, each telephone has one receiver and vice versa. Both classes
have an operation, i.e. the telephone can dial a number and the receiver can be
activated.

Sequence Diagrams. The dynamic flow caused by operation calls can be visu-
alized by sequence diagrams. Sequence diagrams offer the possibility to represent
particular scenarios based on the model provided by the class diagram. Hence, sev-
eral sequence diagrams exist for a given class diagram. In the sequence diagram,
instances of the classes, i.e. objects, are extended by life lines that express the
time of creation and destruction in the scenario. Arrows indicate operations that
are called on an object, and are drawn from the caller to the callee. Besides objects
also actors from the outside environment can be part of the sequence diagram.

Example 2. A sequence diagram is depicted in Fig. 1(b). In that scenario, first a
number is dialed from an actor in the outside environment, before the telephone
activates the receiver.

In this work, class diagrams and sequence diagrams are applied to represent the
semi-automatically determined code skeletons and test cases, respectively.

2.2 Stanford Parser

The Stanford Parser is an open source software compilation published by the
Stanford Natural Language Processing (NLP) Group [6]. It parses sentences in
different languages and returns a phrase structure tree (PST) representing the
semantic structure of the sentence. A PST is an acyclic tree with one root ver-
tex representing a given sentence. Non-terminal and terminal vertices (i.e. leafs)
represent the grammatical structure and the atomic words of this sentence, re-
spectively. A simple PST for the sentence “The small child sings a song” is given
by means of Fig. 2(a). As can be seen all leafs are connected to distinct vertices
that classify the tag of the respective word, e.g. nouns and verbs. These word
tags are further grouped and connected by other vertices labeled with a tag clas-
sifying a part of the sentence, e.g. as noun parts or verb parts. The classifier tags
are abbreviated in the PST, however, in Fig. 2(a) the full classifier is annotated

Assisted Behavior Driven Development Using Natural Language Processing 273

S
sentence

NP
noun part

DT
determiner

The

JJ
adjective

small

NN
noun

child

VP
verb part

VBZ
verb*

sings

NP
noun part

DT
determiner

a

NN
noun

song* verb, present tense, third person singular

(a) Phrase structure tree

det(child-3, The-1)
amod(child-3, small-2)
nsubj(sings-4, child-3)
root(ROOT-0, sings-4)
det(song-6, a-5)
dobj(sings-4, song-6)

(b) Typed dependencies

Fig. 2. Application of the Stanford Parser

to the vertices. For details on how a PST is extracted from a sentence, the reader
is referred to [7].

Besides the PST, the Stanford Parser also provides typed dependencies [8]
which are very helpful in natural language processing. Typed dependencies are
tuples which describe the semantic correlation between words in the sentence.
Figure 2(b) lists all typed dependencies for the sentence considered in Fig. 2(a).
For example, the nouns are assigned their articles using the det relation. Note
that the numbers after the word refer to the position in the text, which is nec-
essary if a word occurs more than once in a sentence. Two further important
relations are nsubj and dobj that allow for the extraction of the typical subject-
verb-object form. In this case it connects the verb sings with both its subject
and object.

In this work, the Stanford Parser is applied to process the structure of the
sentences describing a scenario.

2.3 WordNet

WordNet [9], developed by the Princeton University, is a large lexical database
of English that is designed for use under program control. It groups nouns,
verbs, adjectives, and adverbs into sets of cognitive synonyms, each representing
a lexicalized concept. Each word in the database can have several senses that
describe different meanings of the word. In total, WordNet consists of more than
90,000 different word senses, and more than 166,000 pairs that connect different
senses with a semantic meaning.

Further, each sense is assigned a small description text which makes the pre-
cise meaning of the word in that context obvious. Frequency counts provide
an indication of how often the word is used in common practice. The database
does not only distinguish between the word forms noun, verb, adjective, and
adverb, but further categorizes each word into sub-domains. Those categories
are e.g. artifact, person, or quantity for a noun.

In this work, WordNet is applied to determine the semantics of the sentences
describing a scenario.

274 M. Soeken, R. Wille, and R. Drechsler

3 General Idea and Proposed Approach

As outlined in Sect. 1, behavior driven development puts acceptance tests to be
realized in the focus of the design flow. These acceptance tests are provided as
scenarios written in natural language. The typical BDD design process, as it is
applied today, involves the steps illustrated by means of Fig. 3:

1. Write a scenario describing a certain behavior in natural language.
2. Write a step definition for each sentence (i.e. for each step) in the scenario

which connects the natural language to actual code. Since the sentences in
a scenario are written in natural language, they have to be implemented as
code by the designer. For this purpose, step definitions are written that con-
sist of a regular expression and a block of code. Whenever a step matches a
regular expression, the respective code block of that step definition is exe-
cuted.

3. Write a code skeleton such that the code inside the step definition is compi-
lable.

4. Implement the operations in the code skeleton such that the scenario passes.

Example 3. Figure 4 shows an example of the BDD flow as it is employed in the
Cucumber tool [2]. Here, one scenario is provided and eventually implemented in
Ruby [10]. An example of a scenario is given in Fig. 4(a) describing the process of
initiating a telephone call. For the first sentence, a step definition is created using
Ruby as depicted in Fig. 4(b). Inside the step definition code, it is written what
should be executed when the step is processed by the Cucumber tool. However,
the class Telephone as well as the operation pickUp do not exist yet. Thus,
a code skeleton is manually generated in the next step as shown in Fig. 4(c).
Then, the step definition compiles. Finally, as illustrated in Fig. 4(d), the code
skeleton is implemented in the last step. After this procedure has been applied
to all remaining sentences, the whole scenario passes representing a complete
implementation of this scenario.

So far, all steps are performed manually. Obviously, the scenario is the starting
point for the BDD flow and thus always needs to be created manually. However,
when observing the design flow as depicted in Fig. 3, the following conclusion can
be drawn. The creation of the step definition and the provision of a code skeleton
can in fact be automatized, since the sentences given in the scenario often provide
enough information for an automatic determination of these components. For
example:

Scenario Step Definition Code Skeleton Implementation

Fig. 3. Behavior Driven Development flow

Assisted Behavior Driven Development Using Natural Language Processing 275

Scenario: Placing a call

* Ada picks up the receiver from the telephone

* She dials the number 6-345-789
* The telephone places a call

(a) Scenario

Given /^Ada picks up the receiver from the telephone$/ do
@telephone = Telephone.new
@receiver = @telephone.pickUp

end
(b) Step Definition

class Telephone
def pickUp
end

end

class Receiver
end

(c) Code Skeleton

class Telephone
attr_reader :receiver

def initialize
@receiver = Receiver.new

end

def pickUp
@receiver

end
end

(d) Implementation

Fig. 4. BDD example

– Regular nouns in sentences usually are realized as objects in the system, and
therefore, they can automatically be represented by classes.

– Proper nouns usually represent actors from the outside environment who
interact with the system.

– Adjectives in sentences usually provide further information about the respec-
tive objects. Thus, they can automatically be represented by attributes of
classes.

– Verbs in sentences usually describe actions in a scenario, and can therefore
automatically be represented by operations of classes. Additionally, they
provide information when an operation is called and by whom.

In this work, we propose a BDD methodology which exploits such information
in order to semi-automatically generate step definitions and code skeletons from
scenarios given in natural language. For this purpose, we are making use of UML
class diagrams and UML sequence diagrams that are proper abstractions of code
skeletons and step definitions, respectively, from which the required pieces for
the BDD flow can easily be generated. In the following, the general idea is briefly
illustrated in Figs. 5 and 6 by means of the telephone scenario given in Fig. 4.

First the creation of a class diagram, i.e. a code skeleton, is considered. Us-
ing only the first sentence in Fig. 5 for example, the following information can
automatically be extracted:

276 M. Soeken, R. Wille, and R. Drechsler

Receiver

Telephone

wireless: Boolean
pickUp(): Receiver
dial(number)
placeCall()

1

class Telephone
attr_accessible :wireless

def pickUp
end

def dial(number)
end

def placeCall
end

end

pickUUpU

Ada picks up the receiver from the wireless telephone.

She dials the number 6-345-789.

The telephone places a call.

Fig. 5. Extracting class diagrams from scenarios for the generation of code skeletons

– The sentence contains three nouns. Since Ada is a proper noun, it is treated
as an actor and not as a component of the system. Accordingly, classes are
only created for receiver and telephone .

– The adjective wireless can be identified as related to telephone and thus is
extracted as attribute for the respective class.

– The verb pick up is specified to be an operation of telephone .
– The preposition from indicates a relationship between the receiver and the

telephone. Since the sentence states “the receiver from the wireless telephone”
it can be concluded that a telephone can only have one receiver, in contrast
to “a receiver from the wireless telephone” which would indicate more than
one receiver.

Further information can be determined from the remaining two sentences. The
fragments dials and places a call indicate further operations of the telephone.
The phone number after number can be detected as a parameter for the dial
operation. This eventually leads to the class diagram shown in Fig. 5, which can
be used to generate the code skeleton in the desired language.

Moreover, the order of the sentences and their actions described in it provide
the basis to automatically determine a test case. This is done by automatically
creating a step definition for each sentence in the scenario. From the first sen-
tence, it is known that Ada , i.e. an actor, invokes the pick up operation. The
noun She in the second sentence refers again to Ada . Thus it can be concluded
that the same actor invokes dial with the parameter 6-345-789 in the next step.
The last sentence states that at the end of this scenario the telephone invokes the
operation place a call . All steps can be summarized in a sequence diagram which
can be used to generate step definitions in the desired language as depicted in
Fig. 6.

As illustrated by this example, step definitions and code skeletons can auto-
matically be generated even if the scenario is provided in natural language. We
are aware that sentences in natural language might be ambiguous or incomplete
and thus a fully automatic determination would not always lead to the desired

Assisted Behavior Driven Development Using Natural Language Processing 277

:Telephone

pickUp()

dial(6345789)

placeCall() Given "Ada picks up the receiver from the wireless telephone" do
@receiver = get_or_create(:receiver)
@telephone = get_or_create(:telephone)
@telephone.wireless = true
@telephone.pickUp

end

())

Ada picks up the receiver from the wireless telephone.

She dials the number 6-345-789.

The telephone places a call.

Fig. 6. Extracting sequence diagrams from scenarios for the generation of step
definitions

result. However, as discussed in detail in the next section, the application of
today’s language processing tools in combination with ontologies already shows
very good results. In addition, we propose an interactive flow where the designer
enters into a dialog with the computer. In this flow, the computer is guiding
the designer through the scenario while creating the UML diagrams step by
step. During this process, the designer can refuse the automatically generated
structures or provide the program with further information which cannot be
extracted from the sentence or the ontology. In some cases this can even lead
to a rephrasing of sentences in the scenario, e.g. in the presence of ambiguities.
Then, the proposed approach also advances the design understanding within the
development. If a sentence is misunderstood by the computer program, the same
may also apply to other designers.

Overall, an approach is presented which significantly increases the efficiency
of behavior driven development. As illustrated in Fig. 7, instead of manually
creating step definitions and code skeletons, automatically generated suggestions
from the proposed method just have to be revised or confirmed. The generated
code skeleton is then used as the basis for the implementation, which remains
the only non-automatic step. A further advantage of the new flow is that this
implementation can immediately be validated against the scenario as also the
step definitions have been generated automatically.

Scenario

Step Definition
(Sequence Diagram)

Code Skeleton
(Class Diagram)

Implementation

generates

revise

generates

revise

Fig. 7. Proposed flow

278 M. Soeken, R. Wille, and R. Drechsler

S

NP

NNP

Ada

VP

VBZ

picks

PRT

RP

up

NP

NP

DT

the

NN

receiver

PP

IN

from

NP

DT

the

JJ

wireless

NN

telephone

1. (4) <noun.artifact> receiver, receiving system
(set that receives radio or tv signals)

2. (3) <noun.person> liquidator, receiver1
((law) a person (usually appointed by a court of law)
who liquidates assets or preserves them for the
benefit of affected parties)

3. (3) <noun.artifact> telephone receiver, receiver1
(earphone that converts electrical signals into sounds)

4. (1) <noun.person> recipient, receiver
(a person who receives something)

P

Fig. 8. Extraction of nouns using a PST and the WordNet dictionary

4 Semi-automatic Extraction of Information

As described above, the core of the proposed approach is the semi-automatic
determination of UML class and sequence diagrams from a given scenario in
natural language. Language processing tools and ontologies are exploited for
this purpose. This section provides details on how the required information is
extracted from the given scenarios. The determination of classes, attributes,
and operations as well as their arrangement in a UML class diagram is initially
described. Afterwards, the extraction of the actors of the system and the order
of their actions are described which lead to the desired sequence diagram.

4.1 Classes

Components of the system to be implemented will be represented as classes in a
UML class diagram. In order to extract these classes, the sentences provided by the
scenario are parsed by the Stanford Parser reviewed in Sect. 2.2. This leads to the
PST from which parts of the sentence related to a noun are extracted. Initially
all noun parts (labeled NP in the PST) are extracted, i.e. nouns together with
possible adjectives and articles. Afterwards, they are subdivided into proper nouns
(labeled NNP in the PST) and nouns (labeled NN in the PST). Proper nouns
are ignored – they represent actors and are required later in order to create the
sequence diagram. All remaining nouns are further considered by the WordNet
dictionary (cf. Sect. 2.3) in order to check whether they represent further actors
of the system or actual components for which classes have to be created.

Example 4. Figure 8 shows the PST for the sentence “Ada picks up the receiver
from the wireless telephone”. This sentence is composed of three noun parts from
which Ada is discarded since it is a proper noun. For the remaining two nouns,

Assisted Behavior Driven Development Using Natural Language Processing 279

Background:

* Consider coin.
Scenario:

* Bob picks up a coin.

(a) Example scenario with background

Phrase Meaning
Consider noun. Considers noun as a class
noun is a person. Considers noun as an actor
Ignore noun. Does not consider noun nei-

ther as class nor as an actor

(b) Possible phrases for interaction

Fig. 9. User interaction for nouns

a further check is performed using WordNet. In case of receiver , this exemplary
leads to the lexical file information as given in the page excerpt in the upper
part of Fig. 8. The four entries are ordered by their frequency counts providing
an indication about the commonly used semantic of this word. As can be seen,
receiver might been used as a person (denoted by noun.person) which would
imply an actor of the system and no creation of a class. However, since its use as
an object (denoted by noun.artifact) has a higher frequency count, this semantic
is chosen, i.e. receiver is considered a component and thus a respective class is
created. The same check is applied to telephone .

User Interaction. Although the automatic classification of nouns and thus
the creation of classes works very well for many cases, two problems may occur:
(1) the frequency counts of WordNet lead to a wrong decision or (2) the con-
sidered word cannot be classified using WordNet. In both cases, the user has to
intervene.

A trivial approach is a simple modification of the resulting class diagram
by the user, e.g. the removal of a class when it was wrongly interpreted as
component. Besides that, also an interactive learning scheme can be applied.
The latter has been seamlessly implemented into the Cucumber BDD flow [2]
where scenarios are usually grouped as features. Each feature additionally can
be enriched by a background section which is processed prior to each scenario.
We use pre-defined background steps for providing additional information (again
in natural language) that help the automatic approach to correctly retrieve the
meaning of a word or to assume a context of a scenario. The following example
illustrates the principle.

Example 5. Consider the sentence “Bob picks up a coin”. The word coin is speci-
fied as a noun.possession by WordNet and therefore cannot be classified as class
or actor. Thus in order to set the context the designer can additionally provide
more background as shown in the Cucumber feature illustrated in Fig. 9(a).
Due to the phrase “Consider coin”, the background of coin is clearly set to a
component, i.e. a class is generated for it.

Other background phrases that can be used are given in Fig. 9(b). By applying
a phrase, the approach automatically learns additional information which can
later be applied in other scenarios as well.

280 M. Soeken, R. Wille, and R. Drechsler

4.2 Attributes

The determination of the noun parts as illustrated in Fig. 8 does not only en-
able the extraction of classes, but also of their corresponding attributes. For
this purpose, all vertices representing adjectives are extracted (labeled JJ in the
PST) and are simply connected to the corresponding class. By default Boolean
attributes are assumed. If the adjective additionally is prefixed by adverbs such
as very, slightly, or almost, an integer attribute is assumed instead of the Boolean
type. These cases are explicitly emphasized by the proposed approach. The de-
signer may transform this classification later, e.g. to an enumerated type.

Example 6. Consider the noun part the wireless telephone in the example from
Fig. 8. From the corresponding noun, a class with the name Telephone is ex-
tracted. Additionally, the class is enriched by a Boolean attribute wireless due
to the adjective.

Further attributes can be extracted from other constructs of the sentence. As
an example, consider the phrase “the product 12”. The word 12 is classified as
cardinal number (labeled CD in the PST). If this appears after a noun in a
noun part, it is implied that the respective class has an attribute id of type
integer. This also works with floating point numbers. A similar rule applies
for sentence parts set in quotes. For example, consider the phrase “the song
"Wonderful Tonight"”. In this case it does not make sense to treat the words in
quotes as normal words – wonderful and tonight should clearly not be considered
as adjective and noun, respectively. Instead the whole quote is extracted from
the sentence before parsing and it is stored that the word song can have an
additional identifier. This finally leads to an attribute name of type string.

User Interaction. All information that is automatically extracted from the
sentences in the scenarios as described above can also be provided explicitly by
pre-defined sentences in the background section. The sentence “A noun can be
adjective” adds an attribute adjective of type Boolean to the class representing
noun. In a similar manner, for the sentence “A noun has an id” or “A noun has
a name”, attributes id of type integer or name of type string, respectively, are
added to the class. In contrast, the consideration of certain attributes can be
omitted by the sentences “A noun cannot be adjective”, “A noun has no id”, and
“A noun has no name”.

Further, enumeration types can be added to a class explicitly by the sentence
“The name of a noun can be value, . . . , or value”. In this case, an attribute name
is added to the class representing noun providing an enumeration for each value.

Example 7. Consider again the sentence “Ada picks up the receiver from the
wireless telephone”. By default the tool extracts an attribute wireless of type
Boolean. When adding the sentence “The type of a telephone is wireless or wired”
to the background section, an enumeration named type is added as an attribute
to the class Telephone having the two values wired and wireless. In this case, the
adjective wireless is not extracted for the class Telephone as it already appears
as a value in the enumeration.

Assisted Behavior Driven Development Using Natural Language Processing 281

1 nsubj(picks-2, Ada-1)
2 root(ROOT-0, picks-2)
3 prt(picks-2, up-3)
4 det(receiver-5, the-4)
5 dobj(picks-2, receiver-5)
6 det(telephone-9, the-7)
7 amod(telephone-9, wireless-8)
8 prep_from(receiver-5, telephone-9)

Fig. 10. Typed dependencies for sentence from Fig. 8

4.3 Operations

As outlined in Sect. 3, verbs are usually a good indicator of an operation to be
extracted from a sentence. However, in order to assign a verb and, therefore,
an operation to the corresponding class, the PST alone is not sufficient. For
example, in the sentence “Ada picks up the receiver from the wireless telephone”
it is not obvious whether the operation pick up belongs to the receiver or the
telephone . As a solution, we additionally make use of the typed dependencies
in the sentence (cf. Sect. 2.2). This allows for relating the verb to its subject
and object in the typical subject-verb-object (SVO) phrase. Thus, the first step
consists of extracting the SVO relation in the sentence. In a next step, it is
determined whether the subject or the object in the sentence is the class to
which the operation should be assigned. If one of the nouns (subject or object)
has been identified as an actor and the other one as a class, then this decision is
easy. In other cases, user interaction might be required. The following example
illustrates the principle.

Example 8. Consider again the sentence in Fig. 8. The verb picks in the sen-
tence is easily identified in the PST by searching for a vertex labeled VBZ (verb,
present tense). The typed dependencies for the same sentence are given by means
of Fig. 10. With the relations nsubj (Line 1, nominal subject) and dobj (Line 5,
direct object), the SVO relation Ada-picks-receiver can be determined. The re-
lation prt (Line 3, phrasal verb particle) allows for completing the verb to picks
up which results in the operation name pickUp. Note that the base form of the
verb picks can be identified using a WordNet query. Using this information, the
operation pickUp is added to the class Receiver, since Ada is already classified
as an actor.

However, as already depicted in Fig. 5, this is not the right decision. It makes
more sense that pickUp is an operation of the telephone that returns a receiver.
The information for taking this decision is, however, already included in the
typed dependencies. This is due to the preposition on the word receiver , which is
indicated by the relation prep_from (Line 8, prepositional modifier). Further,
this relation returns the correct link to the word telephone . Since Telephone
also has been classified as a class, the operation pickUp is added to this class.
Further, due to the preposition, Receiver can be identified as return type for
that operation.

282 M. Soeken, R. Wille, and R. Drechsler

User Interaction. If operations should not be generated for a class, the user
can write the sentence “A noun does not verb”. Note that the noun should be
the noun representing the class name the operation is assigned. If for example
the operation pickUp should not be added to the class Telephone, the user would
add “A telephone does not pick up” as a step to the background section. This
seems inconvenient at first glance, since Ada is picking up the receiver in the
sentence. However, those decisions are usually taken after seeing the result of
the automatic translation.

4.4 Generation of Step Definitions

After the class diagram has been created, the same actors and classes with their
attributes and operations can be used to generate the step definitions. While the
scenarios serve as the outline in which the steps are executed, the step definitions
describe the actual code that has to be executed in that step.

For this purpose, consider again the sentence “Ada picks up the receiver from
the wireless telephone”. The automatically generated step definition is illustrated
in Fig. 6. First, for each class extracted from the sentence a respective object
is created. This is done by making use of the factory design pattern [11]. In
particular, two cases may occur, i.e. either a new object has to be created or
the step refers to a possibly already existing object. The functions create and
get_or_create are made available for these two cases. The article of the noun
can be used to determine which function to choose, which is described in detail
in the remainder of the section. Besides that, attribute values are assigned and
operations are transformed into respective operation calls on the objects.

The Role of Articles in Test Cases. The article in front of a noun can be
used to determine whether a new object has to be created or whether the noun
references a possibly existing object. This is illustrated by the following example.

Example 9. Consider the following two sentences.

“A telephone starts ringing. A telephone stops ringing”

This scenario indicates that possibly two telephones are involved, one that starts
ringing and one that stops ringing. If, however, the scenario was specified as

“A telephone starts ringing. The telephone stops ringing”,

it is obvious that the telephone in the second sentence is the same one as in the
first sentence.

In the generation of test cases, we apply the following rule. For nouns with
an undetermined article, always a new instance is generated, i.e. the factory
function create is used. Otherwise, for nouns with an determined article, it is
first tried to find the latest created instance for the respective type. If this is not
possible, an instance is generated. This behavior is implemented in the factory
function get_or_create.

Assisted Behavior Driven Development Using Natural Language Processing 283

Scenarios:
– Customer pays with exact change
– Customer pays and gets money back
– Customer chooses product without

paying
– Machine has no change
– Machine cannot provide desired

product
– Employee fills up the machine

Scenario: Customer pays with exact change
1. A hungry customer approaches the candy machine
2. The candy machine shows the message "Ready"
3. The customer chooses product 12 by using the keypad
4. The candy machine shows the message "1,20 Dollar"
5. The customer provides the exact price to the machine
6. The candy machine returns a piece of product 12
7. The candy machine is ready for the next customer

Fig. 11. Use case scenarios for a candy machine

A similar effect is noticeable when names are used for the actors. Then, the
nouns She or He have to be assigned accordingly.

Example 10. Consider the following scenario.

“Ada and Bob play soccer. She is the goal keeper. He shoots the ball.”

In this scenario, She refers to Ada, and He refers to Bob.

To automatically determine the relation of words such as She, He and also her
or his, the first names of the actors have to be assigned a gender. WordNet is
not capable of doing this. However, probably other dictionaries suitable for that
purpose can be used for this problem. In the meanwhile, we make use of user
interaction in form of background steps such as “Ada is a woman” or “Bob is
a man”.

5 Case Study

We implemented the approach on top of the Cucumber tool [2] in Ruby and
applied it to semi-automatically design a simple candy machine specified by six
acceptance tests. These acceptance tests, provided by means of scenarios, are
summarized in the left-hand side of Fig. 11. Due to page limitations, we cannot
provide and discuss all scenarios in detail. As a consequence, we demonstrate the
usage of the proposed approach for the first scenario (provided in the right-hand
side of Fig. 11) only. For this purpose, the output of the approach as well as
the resulting parts for the class diagram are sketched for each sentence in the
following. The overall class diagram is created as union of all parts.

A hungry customer approaches the candy machine. CandyMachine

approach()
Customer has been detected as actor.
Detected class CandyMachine without attributes.
Detected operation approach for class CandyMachine.

The first sentence was correctly processed by the approach, i.e. customer was
correctly identified as an actor and candy machine as a component leading to
the creation of a class. The two words candy and machine have correctly been
identified as compound noun, since both belong to the same noun part (NN)

284 M. Soeken, R. Wille, and R. Drechsler

in the PST. Further, the automatic approach has originally created an opera-
tion approach for the corresponding verb in the sentence. However, in the role
of the designer, we decided not to use this operation in our class. For this pur-
pose, a sentence “A candy machine does not approach” has been added to the
background section in the feature description for the Cucumber tool.
The candy machine shows the message "Ready".
Detected class CandyMachine without attributes.
I do not know how to categorize message as actor or class. I know it as communication.
Do you mean message as in a communication (usually brief) that is written or spoken
or signaled; "he sent a three-word message"?

In the second sentence, the approach was not able to determine whether or not
a class should be created for the noun message . It is neither classified as person
nor artifact in the WordNet database, but as communication. The approach
informs the user about that and also prints out the corresponding WordNet
information. Based on that, the user can take a decision. In the considered case,
a class should be created for message . This is achieved by adding the sentence
“Consider message” to the background section. Processing the sentences again
including this additional information leads to the following result:
The candy machine shows the message "Ready". CandyMachine

show(m: Message)

Message

name: String
Detected class CandyMachine without attributes.
Detected class Message with attribute name.
Detected operation show with parameter message for
class CandyMachine.

Now, everything has been detected correctly. The class Message automatically
gets the attribute name because of the identifier "Ready" in the sentence.

The customer chooses product 12 by using the
keypad.

KeyPad

choose(p: Product)

Product
id: Integer

Customer has been detected as actor.
Detected class Product with attribute id.
Detected class Keypad without attributes.
Detected operation choose with parameter product for
class Keypad.

In the third sentence, the operation choose is added to the class KeyPad because
of the preposition in the sentence. Since the object in the sentence is product ,
the operation gets a respective parameter. An attribute id is added to the class
Product due to the number after the noun.

The fourth sentence “The candy machine shows the message "1,20 Dollar"”
is equivalent to the second sentence in the scenario when considering structure
extraction. In fact, the sentences will even generate the same step definition,
since the Cucumber tool automatically extracts regular expressions for words in
quotes.

In the fifth sentence, the user has to manually interact since the word price
cannot be classified precisely. After it has been added as considered to the back-
ground section, the tool proceeds as follows:

Assisted Behavior Driven Development Using Natural Language Processing 285

The customer provides the exact price to the
candy machine.

CandyMachine

provide(p: Price)

Price
exact: BooleanCustomer has been detected as actor.

Detected class Price with attributes exact.
Detected class CandyMachine without attributes.
Detected operation provide with parameter price for
class CandyMachine.

Since the adjective exact is associated to the noun price , it appears as an at-
tribute for the class Price.

In a similar fashion, the remaining sentences and scenarios have been pro-
cessed. Eventually, this led to a class diagram that consists of 6 classes with
3 attributes and 7 operations. In total, 9 sentences were added to the back-
ground section for a total of 40 sentences in 6 scenarios. Analogously, 18 step
definitions have been created which cover all sentences in all scenarios and allow
the execution of the acceptance tests.

Overall, step definitions and code skeletons of a complete system, the consid-
ered candy machine, have been semi-automatically generated by the proposed
approach. For this purpose, each sentence was iteratively processed. In case of
uncertainties, the user entered into a dialog with the computer. Compared to
an entirely manual flow, this represents a significant improvement considering
that the designer is automatically served with several options which she/he can
easily refine.

6 Related Work

The proposed approach is a significant step towards an automatization of BDD.
In doing so, our solution aligns with other approaches aiming at that goal –
in particular in the domain of UML. As an example, the work presented in [12]
extracts UML class diagram from specifications in natural language which, after-
wards are used to generate code skeletons. The authors make use of a structure
similar to the PST, but not of typed dependencies and not of a lexical database
for classification. Further, the input language must be written in simple English
and follow a certain sentence structure. User interaction is not intended in this
approach.

The tool named REBUILDER UML [13] uses natural language as consti-
tuents for object oriented data modelling by using an approach based on case-
based reasoning. However, only class diagrams are supported by this operation.
Similarly, the tool LOLITA [14] generates an object model from a text in natural
language. However, the tool only identifies objects from text and cannot further
distinguish between other elements such as classes, attributes, and operations.

Class diagrams can also be extracted from natural language text using the tool
CM-BUILDER [15]. Also, here dynamic aspects are not considered. Furthermore,
the specification is considered as a whole which impedes user interaction and the
result is always the complete class diagram such that subsequent modifications
are cumbersome.

286 M. Soeken, R. Wille, and R. Drechsler

In [16] a method for generating executable test benches from a textual re-
quirements specification is proposed. For this purpose, a subset of the English
language called textual normal form has been designed that can be transformed
into UML class diagrams which can be translated into classification trees ac-
cording the Classification Tree Method for Embedded Systems (CTM/ES) [17].
These classification trees are finally used to generate the resulting executable
test benches which can be utilized in a formal verification environment. How-
ever, besides that a different domain is addressed in this approach, the designer
is limited to a restricted subset of the English language.

7 Conclusions

In this work, we proposed an assisted flow for BDD where the user enters into a
dialog with the computer in order to semi-automatically generate step definitions
and code-skeletons from a given scenario. For this purpose, natural language
processing tools are exploited. A case study illustrated the application. Instead of
going through the established BDD steps manually, the designer is automatically
served with options which easily can be refined.

The proposed approach is a significant step towards an automatization of
BDD. Moreover, while the case study focuses on acceptance test within the
BDD scheme, the results of the proposed approach also motivate a consideration
of general natural language system specifications. The proposed methodology
provides a basis for further work in this direction.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) (DR 287/23-1).

References

1. Beck, K.: Test Driven Development. By Example. Addison-Wesley Longman, Am-
sterdam (2003)

2. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. The Pragmatic Bookshelf (January 2012)

3. North, D.: Behavior Modification: The evolution of behavior-driven development.
Better Software 8(3) (March 2006)

4. Evans, E.J.: Domain-Driven-Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Longman, Amsterdam (2003)

5. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language reference
manual. Addison-Wesley Longman, Essex (1999)

6. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Pearson Prentice Hall
(2008)

7. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Annual Meeting of
the Association for Computational Linguistics, pp. 423–430 (July 2003)

8. de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating Typed Depen-
dency Parses from Phrase Structure Parses. In: Int’l Conf. on Language Ressources
and Evaluation, pp. 449–454 (May 2006)

Assisted Behavior Driven Development Using Natural Language Processing 287

9. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

10. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly Media
(January 2008)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, Amsterdam
(1994)

12. Bajwa, I.S., Samad, A., Mumtaz, S.: Object Oriented Software Modeling Using
NLP Based Knowledge Extraction. European Journal of Scientific Research 35(1)
(January 2009)

13. Oliviera, A., Seco, N., Gomes, P.: A CBR Approach to Text to Class Diagram
Translation. In: TCBR Workshop at the European Conf. on Case-Based Reasoning
(September 2006)

14. Mich, L., Garigliano, R.: A Linguistic Approach to the Development of Object
Oriented Systems using the NL System LOLITA. In: Bertino, E., Urban, S. (eds.)
ISOOMS 1994. LNCS, vol. 858, pp. 371–386. Springer, Heidelberg (1994)

15. Harmain, H.M., Gaizauskas, R.J.: CM-Builder: A Natural Language-Based CASE
Tool for Object-Oriented Analysis. Journal of Automated Software Engineer-
ing 10(2), 157–181 (2003)

16. Müeller, W., Bol, A., Krupp, A., Lundkvist, O.: Generation of Executable Test-
benches from Natural Language Requirement Specifications for Embedded Real-
Time Systems. In: Hinchey, M., Kleinjohann, B., Kleinjohann, L., Lindsay, P.A.,
Rammig, F.J., Timmis, J., Wolf, M. (eds.) DIPES 2010. IFIP AICT, vol. 329, pp.
78–89. Springer, Heidelberg (2010)

17. Grochtmann, M., Grimm, K.: Classification trees for partition testing. Software
Testing, Verification and Reliability 3(2), 63–82 (1993)

	Assisted Behavior Driven Development
Using Natural Language Processing
	Introduction
	Preliminaries
	Unified Modeling Language
	Stanford Parser
	WordNet

	General Idea and Proposed Approach
	Semi-automatic Extraction of Information
	Classes
	Attributes
	Operations
	Generation of Step Definitions

	Case Study
	Related Work
	Conclusions
	References

