
Using πDDs in the Design of Reversible Circuits

(Work-In-Progress)

Mathias Soeken1,3, Robert Wille1, Shin-ichi Minato2, and Rolf Drechsler1,3

1 Institute of Computer Science, University of Bremen
Group of Computer Architecture, D-28359 Bremen, Germany
{msoeken,rwille,drechsle}@informatik.uni-bremen.de

2 Hokkaido University
Sapporo 060-0814, Japan

minato@ist.hokudai.ac.jp
3 Cyber-Physical Systems, DFKI GmbH

D-28359 Bremen, Germany
rolf.drechsler@dfki.de

Abstract. With πDDs a data structure has recently been introduced
that offers a compact representation for sets of permutations. Since re-
versible functions constitute permutations on the input assignments, they
can naturally be expressed using this data structure. However, its poten-
tial has not been exploited so far. In this work-in-progress report, we
present and discuss possible applications of πDDs within the design of
reversible circuits including techniques for synthesis, debugging, and an
efficient determination of the number of minimal circuits. We observed
that πDDs inhibit the same space complexities as truth tables and, hence,
do not superior existing design methods in many cases. However, they
are advantageous when dealing with several functions or gates at once.

1 Introduction

Decision diagrams offer a compact representation of Boolean functions and ma-
trices and, thus, have been widely applied in the design of reversible circuits.
As examples, Binary Decision Diagrams (BDDs) have been applied for exact,
heuristic, and hierarchical synthesis of both reversible and irreversible func-
tions [1–3]. As an alternative to BDDs, the application of Kronecker functional
decision diagrams, an extension of BDDs, has lead to further improvements [4].
Quantum Multiple-valued Decision Diagrams (QMDDs) [5], enabling a compact
representation for complex matrices, have been used for both equivalence check-
ing [6] and synthesis of large reversible functions ensuring a minimal number
of lines [7]. Similar data-structures have efficiently been applied for the simula-
tion and verification of quantum circuits [8, 9]. In fact, decision diagrams have
been the key methodology for breakthroughs in the design of reversible circuits.
For the first time, BDDs allowed synthesis of minimal circuits for a significant
amount of functions [1] and they enabled the synthesis of large Boolean functions
with more than 100 variables [2]. For the latter case, the main problem of the

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 197–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

198 M. Soeken et al.

algorithm is the huge amount of extraneous lines which impedes the practical
applicability of that approach. However, the problem of additional lines in the
synthesis of large functions has been solved again with decision diagrams, in
particular using QMDDs [7].

However, while BDDs and QMDDs offer a compact representation for func-
tions and matrices, the recently introduced πDDs [10] allow for a compact rep-
resentation for permutations. Hence, they are an interesting extension to the
set of considered decision diagrams in the design of reversible circuits. Since re-
versible functions constitute permutations on the input assignments, they can
naturally be expressed using this data structure. In fact, πDDs do not only allow
a compact representation for single permutations, but for a set of permutations.
Therefore, they can particularly be applied for many problems where the above
mentioned data structures are not advantageous.

In this work-in-progress report, we briefly review the underlying data-struc-
ture and afterwards discuss possible applications in different areas of the design
of reversible circuits. These applications include synthesis, debugging, and an
efficient determination of the number of minimal circuits. Our observations show
that, πDDs inhibit the same space complexities as truth tables (i.e. they are
exponential in space) and, hence, in many cases do not superior existing methods.
However, advantages can be gained when dealing with several functions or gates
at once.

2 Preliminaries

2.1 Reversible Functions and Circuits

A function f : IBn → IBn is called reversible if it represents a bijection, i.e. each
input maps uniquely to an output pattern. As a result, reversible functions repre-
sent permutations on the set {0, . . . , 2n − 1}. Reversible functions can be realized
using reversible circuits. The process of determining a reversible circuit for a given
function is called synthesis. The circuits are usually composed as a cascade of re-
versible gates where the Toffoli gate [11] constitutes their most prominent repre-
sentative. Given a set of variablesX = {x1, . . . , xn} a Toffoli gate is a tuple (C, t)
with C ⊂ ⋃

x∈X{x, x} such that ∀x ∈ X : {x, x} �⊂ C being the set of control
lines and t ∈ X with {t, t} ∩ C = ∅ being the target line of the gate. A Toffoli
gate inverts the target line if, and only if, all control lines xi (xi) are set to 1 (0).
Positive (negative) literals in C are called positive (negative) control lines.

2.2 The πDD Data-Structure

The πDDs [10] allow for a compact representation of sets of permutations and
work similar to ZDDs [12] which allow for a compact representation of sets of
variables. πDDs exploit that permutations can be decomposed into elementary
transpositions swapping two elements, i.e. that a permutation can be seen as
a set of its transpositions. As an example the permutation (3, 5, 2, 1, 4) can be

Using πDDs in the Design of Reversible Circuits 199

represented by a sequence of transpositions τ(2,1)τ(3,2)τ(4,1)τ(5,4), i.e. first the
items 5 and 4 are interchanged, then 4 with 1 and so on until the identity
permutation πe = (1, 2, 3, 4, 5) results. When always swapping the elements with
the highest absolute value first, sequences of transpositions are canonical.

3,2

1

2,1{πe, (2, 1)}

{πe, (2, 1), (1, 3, 2)}
According to this principle, the vertices in πDDs

are labeled using the respective transposition (in
comparison, in ZDDs the vertices are labeled us-
ing the set element). The terminal vertices 1 and 0
represent the set containing the identity permuta-
tion {πe} and the empty set ∅, respectively. As an
example, on the left-hand side, a πDD is illustrated
representing the permutations {πe, (2, 1), (1, 3, 2)}.
Traversing this πDD from the top to the bottom
leads to the transpositions to be applied so that
eventually the identity permutation results.

Several operations can be carried out efficiently on πDDs, e.g. counting the
number of permutations which is equivalent to counting the number of 1-paths in
BDDs or ZDDs. Furthermore, calculating the Cartesian product P ∗Q = {αβ|α ∈
P, β ∈ Q} is efficient, which is the set of all possible composite permutations
chosen from P and Q. Due to page limitations, the reader is referred to [10] for
a comprehensive discussion on πDDs.

3 Applications in the Design of Reversible Circuits

3.1 Determination of the Number of Minimal Circuits

As discussed in the previous section, πDDs allow for a compact representation
of sets of permutations as well as efficient operations such as counting the per-
mutations and the Cartesian product. If gates in a circuit are considered as
permutations, the latter naturally expresses the gate composition in reversible
circuits. Combining both operations allows for an efficient determination of the
number of minimal circuits.

This is achieved by creating a set of all elementary gates that may occur in
a circuit. Afterwards, the Cartesian product on these gates is iteratively con-
structed. As a result, all reversible functions are enumerated and contained in
the resulting πDD. By extracting the transpositions from the paths in the πDD,
it can easily be obtained how many minimal circuits composed of a certain num-
ber of gates exist. This πDD represents a set of possible functions but does not
explicitly represent the structure of gates for each function. However, we can
extract the actual gates by using πDD-based operations, as shown in the next
section. Nevertheless, the information on the number of minimal circuits already
is interesting for statistical purposes.

Table 1 lists all permutations for positively controlled Toffoli gates acting
on 3 lines. For the sake of an improved readability transpositions τ(x,y) are

written as
(
x
y

)
. Each permutation is denoted Tt,µ where t is the target line of

the gate and μ is an index denoting the set of control lines. Given that, the

200 M. Soeken et al.

Table 1. Permutations for all positively controlled Toffoli gates on 3 lines

μ T0,µ T1,µ T2,µ

0
(
000
001

) (
010
011

) (
100
101

) (
110
111

) (
000
010

) (
001
011

) (
100
110

) (
101
111

) (
000
100

) (
001
101

) (
010
110

) (
011
111

)

1
(
010
011

) (
110
111

) (
001
011

) (
101
111

) (
001
101

) (
011
111

)

2
(
100
101

) (
110
111

) (
100
110

) (
101
111

) (
010
110

) (
011
111

)

3
(
110
111

) (
101
111

) (
011
111

)

set of all positively controlled Toffoli gates acting on n lines can be written

as Tn =
⋃n−1

t=0

⋃2n−1−1
µ=0 Tt,µ. Since reversible functions can also be represented

by permutations, we can count all functions realized by minimal circuits using Fk

where k denotes the number of gates with

F0 = {πe}, F1 = F0 ∪ Tn, and Fk = Fk−1 ∗ Tn for k > 1 . (1)

Table 2. Size of |Fk| − |Fk−1| for
four gate libraries

k T3 T±
3 T̂3 T̂±

3

0 1 1 1 1
1 12 27 3 12
2 102 369 6 90
3 625 2925 9 476
4 2780 13282 5 1903
5 8921 20480 0 5472
6 17049 3236 0 10388
7 10253 0 0 11756
8 577 0 0 7347
9 0 0 0 2408
10 0 0 0 430
11 0 0 0 36
12 0 0 0 1∑

40320 40320 24 40320

The approach can easily be adapted to sup-
port other gate libraries such as Toffoli gates
containing also negative control lines (de-
noted by T±

n) as well as libraries that only
consist of Toffoli gates that are fully con-
trolled, i.e. |C| = n−1 for each gate (denoted
by T̂n and T̂±

n). Table 2 shows the number of
circuits determined for k ranging from 0 to 12
for all these four gate libraries. In fact, only
the number of newly found functions is listed,
i.e. |Fk| − |Fk−1|. As can be seen, all gate li-
braries except for T̂3 are universal, since the
number of all reversible functions over 3 vari-
ables is 23! = 40320. In fact, only 24 func-
tions can be represented when using gates
exclusively from library T̂3. Furthermore, the
numbers for the gate library T̂±

3 are very in-
teresting as they are more balanced than the
other ones. Also, this gate library should be
more efficient when used with πDDs since all elementary gates can be represented
by permutations that are composed of only one transposition. The largest mini-
mal function consists of 12 gates when using this library and is described by the
permutation (7, 6, 4, 5, 1, 0, 2, 3).

All this information can easily be extracted using the operations supported on
πDDs within less than a second for all gate libraries. However, when performing
the same experiments for n = 4, the approach is not scalable anymore. Note that
increasing n by 1 doubles the number of elements in the respective permutations.
Further, the number of vertices in the πDD is the number of elements squared,
i.e. 22n.

Using πDDs in the Design of Reversible Circuits 201

3.2 Synthesis with Minimal Number of Gates

Based on the results and procedures of the previous section, a synthesis algo-
rithm realizing a function f with a minimal number of gates can be formulated.
For this purpose, the function f to be synthesized is represented as permuta-
tion πf . Then, all functions are enumerated as in Eq. (1). After each step k, it
is checked whether πf is contained in all functions Fk. In that case, the mini-
mal number of gates k is already determined. However, the actual circuit has
not been obtained yet. For this purpose, the algorithm moves backwards going
to F0 by applying gates from Tn. More precisely, an algorithm for the synthesis
of reversible functions ensuring minimal number of gates can be formulated as
follows.

Algorithm E (Exact Synthesis). The reversible function f to be synthesized
is given as permutation πf .

E1. [Initialize.] Set F0 ← {πe}, F1 ← F0 ∪ Tn, and k← 1.

E2. [Found minimum?] If Fk ∩ {πf} �= ∅, i.e. πf ∈ Fk, go to step E4.

E3. [Increase k.] Set k ← k + 1, Fk ← Fk−1 ∗ F1 and return to step E2.

E4. [Extract gate.] Select π ∈ Tn such that πfπ ∈ Fk−1.

E5. [Next gate?] Set k ← k − 1 and πf ← πfπ. If k = 1, terminate, otherwise
return to step E4.

This algorithm faces similar problems as discussed in the end of Sect. 3.1, i.e. the
complexity raises significantly with increasing size of the function. One possibility
to address that is to use a different gate library such as T̂±

n which contains smaller
permutations. However, as for any other existing exact synthesis approach, the
size of all elements contained is still exponential, i.e. |Tn| = |T̂±

n | = n ·2n−1. This
will always cause scalability problems in step E4 in which all gates need to be
traversed in the worst case.

3.3 Heuristic Synthesis

Unlike the exact synthesis approach, where all functions are enumerated first
in order to check whether the function f to be synthesized is contained, the
starting point of the heuristic synthesis approach is the function f itself. Similar
to the QMDD-based synthesis procedure [7] gates (or permutations) should be
applied according to the structure of the πDD for the function in its current
state. However, the πDD-based approach allows for applying several gates at
once instead of only one at a time. The result can then be checked for the best
current solution and then proceed from there. The goal is to transform the πDD
representing πf by means of gate operations such that eventually the identity
function, i.e. πe is reached. Since the corresponding πDD consists only of one
terminal vertex, the aim during synthesis is to constantly reduce the number of
non-terminal vertices in the πDD.

202 M. Soeken et al.

3.4 Debugging

As discovered in the previous section, the πDDs for reversible functions grow
exponentially with respect to the number of lines. As a result, it is likely that
the above mentioned techniques are not applicable to circuits of a larger scale.
However, πDDs are advantageous when considering multiple functions at once
which should be illustrated in this section. Consider a simple debugging prob-
lem to be solved where a faulty circuit should be checked for a missing-gate
defect. Given a circuit C = g1 . . . gd consisting of n lines where each gate gi can
be described by its permutation πgi and a function f represented by πf , this
debugging problem can be solved using πDDs by checking if πf ∈ F , where

F =
d⋃

i=0

({πg1 . . . πgi} ∗ Tn ∗ {πgi+1 . . . πgd}) .

All operations can be carried out efficiently on the πDD data structure.

4 Conclusions and Future Work

The πDD for one function can be exponential in size, in fact the permutation for
a NOT gate (Toffoli gate without control lines) in a circuit with n lines consists
of 2n−1 transpositions which is equal to the number of non-terminal vertices in
the πDD. As a result, πDDs are not suitable for the synthesis of large functions
and thus probably not suitable for synthesis in general. Since determining the
minimal number of circuits for 4 circuit lines is already inefficient, it is not to
expect that the exact synthesis algorithm based on πDDs can keep up with the
results achieved using the exact synthesis approaches based on Boolean satisfi-
ability [13]. However, conceptual algorithms that have been discovered allow an
efficient counting and enumerating of reversible functions of small sizes. Inter-
esting statistics comparing different gate libraries have been observed.

Further, the πDDs are advantageous when several functions at once should be
considered at the same time, whereas no other graphical data-structure that has
been used in the design for reversible circuits so far possesses this property. As
a result, the efficient storing of multiple permutations can be exploited. Hence,
πDDs should be used in the context of algorithms for reversible functions and
circuits that inhibit these properties, e.g. within debugging where πDDs allow
to consider several solutions at once.

Algorithms of such kind should be considered in future work. Furthermore,
the performance of the πDD implementation should be enhanced such that the
determination of the minimal number of circuits can be performed for a larger
number of circuit lines. The size of the permutations that are represented through
reversible functions grows exponentially as the number of circuit lines grows
linearly. This affects the performance of the πDDs in a bad manner, since they
allow permutations of all sizes and not only the special cases represented by
reversible functions. As a result, also the decomposition technique that serves as

Using πDDs in the Design of Reversible Circuits 203

the base for current πDDs should be inspected for improvement in the special
case of reversible functions, e.g. by explicitly targeting reversible gates as atomic
unit instead of transpositions.

Nevertheless, we are convinced that πDDs fit well in the current zoo of graph-
ical data-structures. Although they do not allow an improvement of current
techniques they will serve as an efficient data-structure for problems that ex-
plicitly require the use of several gate operations or the consideration of several
functions in general.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) (DR 287/20-1).

References

1. Wille, R., Le, H.M., Dueck, G.W., Große, D.: Quantified Synthesis of Reversible
Logic. In: Design, Automation and Test in Europe, pp. 1015–1020. IEEE (March
2008)

2. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conference, pp. 270–275. ACM (July 2009)

3. Kerntopf, P.: A New Heuristic Algorithm for Reversible Logic Synthesis. In: Design
Automation Conference, pp. 834–837 (June 2004)

4. Soeken, M., Wille, R., Drechsler, R.: Hierarchical synthesis of reversible circuits
using positive and negative Davio decomposition. In: Int’l Design and Test Work-
shop, pp. 143–148 (December 2010)

5. Miller, D.M., Thornton, M.A.: QMDD: A Decision Diagram Structure for Re-
versible and Quantum Circuits. In: Int’l Symp. on Multiple-Valued Logic, p. 30.
IEEE Computer Society (May 2006)

6. Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence Checking of Re-
versible Circuits. In: Int’l Symp. on Multiple-Valued Logic, pp. 324–330. IEEE
Computer Society (May 2009)

7. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of Re-
versible Circuits with Minimal Lines for Large Functions. In: Asia and South Pa-
cific Design Automation Conference (January 2012)

8. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Heidelberg (2009)

9. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method
for quantum circuits. IEICE Transactions 91-A(2), 584–594 (2008)

10. Minato, S.-I.: πDD: A New Decision Diagram for Efficient Problem Solving in Per-
mutation Space. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 90–104. Springer, Heidelberg (2011)

11. Toffoli, T.: Reversible Computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

12. Minato, S.: Zero-Supressed BDDs for Set Manipulation in Combinational Prob-
lems. In: Design Automation Conference, pp. 272–277 (June 1993)

13. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Multiple-Control Toffoli
Network Synthesis With SAT Techniques. IEEE Trans. on CAD 28(5), 703–715
(2009)

	Using DDs in the Design of Reversible Circuits
	Introduction
	Preliminaries
	Reversible Functions and Circuits
	The DD Data-Structure

	Applications in the Design of Reversible Circuits
	Determination of the Number of Minimal Circuits
	Synthesis with Minimal Number of Gates
	Heuristic Synthesis
	Debugging

	Conclusions and Future Work
	References

