
Property Checking of Quantum Circuits
Using Quantum Multiple-Valued

Decision Diagrams

Julia Seiter1, Mathias Soeken1,2, Robert Wille1, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen
Group of Computer Architecture, D-28359 Bremen, Germany

{jseiter,msoeken,rwille,drechsle}@informatik.uni-bremen.de
2 Cyber-Physical Systems

DFKI GmbH, D-28359 Bremen, Germany
rolf.drechsler@dfki.de

Abstract. For the validation and verification of quantum circuits main-
ly techniques based on simulation are applied. Although lots of effort
has been put into the improvement of these techniques, ensuring the
correctness still requires an exhaustive consideration of all input vectors.
As a result, these techniques are particularly insufficient to prove a circuit
to be error free.

As an alternative, we present a symbolic formal verification method
that is based on Quantum Multiple-Valued Decision Diagrams (QMDDs),
a data-structure allowing for a compact representation of quantum cir-
cuits. As a result, using QMDDs it is possible to check the correctness
of a circuit without exhaustively considering all input patterns.

1 Introduction

Quantum computation [1] has received significant attention in recent years. Us-
ing quantum circuits many important problems such as factorization or database
search can be solved quadratically or even exponentially faster in comparison to
conventional technologies. As a result, much effort has been spent in the past
on how to design the corresponding circuit structures. In particular synthesis
received much attention (see e.g. [2–6]). But besides realizing quantum circuits
for a given problem, verification and validation is an essential step that ensures
whether obtained designs realize the desired functionality or not.

Considering conventional circuit design, verification has become one of the
most important steps in the design flow. As a result, very powerful approaches
have been developed in this domain, ranging from simulative verification (see
e.g. [7–10]) to formal equivalence checking (see e.g. [11, 12]) and property check-
ing (see e.g. [13, 14]).

For quantum computation, verification is still at the beginning. Even if first
approaches in this area exist (a brief outline is provided in Sect. 3.2), they
are mainly based on simulation, i.e. ensuring the correctness still requires an
exhaustive consideration of the input vectors. As a result, these techniques are
particularly insufficient to prove a circuit to be error-free.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 183–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

184 J. Seiter et al.

In this work, we present an alternative solution to the property checking
problem of quantum circuits which makes use of symbolic formal verification.
More precisely, for this task we consider Quantum Multiple-Valued Decision Di-
agrams (QMDDs, [15]), which is a data-structure that allows for a compact
representation of quantum circuits. Using QMDDs both a given quantum circuit
and the property to be verified can be efficiently represented. Then, checking
whether the circuit satisfies the considered property or not can be conducted on
this data-structure. The properties themselves are thereby provided by means
of a combinatorial and LTL-like language.

Experiments show that, in comparison to state-of-the-art simulation methods,
the proposed approach is more robust. While simulation-based approaches work
faster for failing properties (where the simulation can immediately be termi-
nated once a counter-example is obtained), QMDDs clearly outperform simula-
tion for holding properties where all possible input patterns need to be traversed
exhaustively.

The remainder of this paper is structured as follows. The next section briefly
reviews the basics on quantum circuits and the QMDD data-structure. Section 3
formally defines the considered problem, discusses related work, and introduces
the general idea of the proposed solution. Afterwards, implementation details are
described in Sect. 4. A summary of the experimental evaluation and conclusions
are provided by means of Sect. 5 and Sect. 6, respectively.

2 Preliminaries

In order to keep the paper self-contained, this section reviews the basics on
quantum circuits and the QMDD data-structure applied in this work. Due to
page limitations the following descriptions are kept brief. We refer the reader
to [1] and [15] for a more detailed treatment of quantum circuits and QMDDs,
respectively.

2.1 Quantum Circuits

In quantum computation [1], qubits are the elementary information elements.
A qubit is usually denoted by its state |ϕ〉 = α|0〉 + β|1〉 which is a super-
position of the basis states |0〉 and |1〉 with α and β being amplitudes such
that |a|2 + |b|2 = 1. Qubits can be composed in terms of quantum registers
|ϕ1 . . . ϕn〉 =

∑2n−1
i=0 αi|i〉, where |i〉 denotes the conventional state on n bits.

Quantum registers are elements in the 2n-dimensional complex Hilbert space H.
Quantum computation can be performed using unitary matrices that are closed
under H.

Established quantum operations include e.g. σx =
[
0 1
1 0

]
(also known as

Pauli-X or NOT operation) and H = 1√
2

[
1 1
1 −1

]
(also known as Hadamard

operation). The first operation interchanges the amplitudes of a quantum state
whereas the latter operation can be used to bring a conventional state into a
superposition, e.g. H |0〉 = 1√

2
(|0〉 + |1〉). While these operations act on single

Property Checking of Quantum Circuits Using QMDDs 185

|0〉
⎡

⎢
⎣

1
0
0
1

⎤

⎥
⎦ = 1√

2
(|00〉 + |11〉)|0〉

H

Fig. 1. Circuit that entangles two qubits

qubits only, they can be extended to also act on quantum registers. This can
either be accomplished by the parallel composition using the Kronecker prod-
uct (⊗) or by controlling the single-qubit operation by one further qubit. As an
example, a Pauli-X operation controlled by another qubit can be represented by[1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

]
. Such an operation is called controlled NOT (CNOT).

Quantum circuits allow for a graphical representation of the composition of
several quantum operations. To this end, a circuit line is drawn horizontally for
each qubit. The quantum gates that represent quantum operations are drawn as
a cascade from left to right. Control lines are denoted using while a quantum
operation U is drawn using a rectangle labeled U . An exception is the Pauli-X
operation that is denoted using .

Example 1. Figure 1 shows a circuit that entangles two qubits. The first gate is
a Hadamard operation on the first qubit while the second operation is a CNOT.
The overall quantum operation of the circuit is CNOT · (H ⊗ I) where I =

[
1 0
0 1

]

is the 2 × 2 identity matrix.

2.2 Quantum Multiple-Valued Decision Diagrams

A Quantum Multiple-valued Decision Diagram (QMDD, [15]) is a canonical rep-
resentation of a unitary matrix M and, thus, also of a quantum circuit. It is a
directed acyclic graph with one root node and two terminal nodes, labeled 0
and 1 .

Each node v in a QMDD represents a submatrix of M . In order to build a
QMDD, M is divided into four submatrices. The matrix M itself is represented
by the root node v1. Each submatrix is represented by a child of v1 so that
each node in the QMDD has four child nodes. This is repeated recursively for
each submatrix until they are reduced to size 1× 1. Submatrices of this size are
represented accordingly by one of the terminal nodes [15].

Figure 2(a) illustrates this principle by decomposing an arbitrary matrix M .
On top of the matrix M , the input patterns are denoted. The corresponding
output patterns are denoted to the left-hand side of M . As can be seen, each
of the submatrices of M represents an input/output assignment of the very
first variable x1. For example, the submatrix M1 represents the mapping of x1

from 0 to 0. Figure 2(b) shows the respective submatrices represented in terms
of successors of the root node. The submatrices of M are assigned to the child
nodes as follows.

186 J. Seiter et al.

0
0

..
.0

. . .

0
1

..
.1

1
0

..
.0

. . .

1
1

..
.1

00 . . . 0

M1 M2

01 . . . 1

10 . . . 0

M3 M4

11 . . . 1

Inputs

O
u
tp

u
ts ...

...

(a) Matrix

x1 �→ x′
1

x2 �→ x′
2 x2 �→ x′

2

M1

M2 M3

M4

(b) QMDD

Fig. 2. Matrix with input output mappings and QMDD

– The upper left submatrix M1 is the first child and represents the mapping
0 �→ 0 of the input x1 to the output x′

1.
– The upper right submatrix M2 is the second child and represents the mapping

1 �→ 0 of the input x1 to the output x′
1.

– The lower left submatrix M3 is the third child and represents the mapping
0 �→ 1 of the input x1 to the output x′

1.
– The lower right submatrix M4 is the fourth child and represents the mapping

1 �→ 1 of the input x1 to the output x′
1.

In a QMDD, each edge is labeled with a weight. If a submatrix consists of 0 or 1
entries, the respective edge is annotated with the weight 1. Submatrices consist-
ing only of 0-entries are represented by edges leading directly to 0 . In order to
keep the QMDD readable, these edges are drawn by a 0-stub. Also, the weight 1
is often omitted as 1 defines the default weight. In case of a submatrix containing
complex-valued entries, the respective edge is annotated with a complex-valued
weight. More precisely, if all entries have the value w or are a multiple of w, then
the edge is labeled with the weight w. The final value of an entry in the matrix is
then computed by multiplying all the weights from the root node to the terminal.

These concepts are illustrated in the following example:

Example 2. Figure 3 shows a QMDD representing the circuit from Fig. 1. The
corresponding matrix M is

⎡

⎢
⎢
⎢
⎣

1√
2

0 1√
2

0
0 1√

2
0 1√

2

0 1√
2

0 − 1√
2

1√
2

0 − 1√
2

0

⎤

⎥
⎥
⎥
⎦

.

By dividing M into four submatrices, the child nodes of the root node can
be determined. The first and second submatrix contain the same entries and,
thus, are represented by a single shared node. The third and fourth submatrix
contain entries of the same value but with different signs. Consequently, they

Property Checking of Quantum Circuits Using QMDDs 187

x1 �→ x′
1

x2 �→ x′
2 x2 �→ x′

2

1

1√
2

1√
2

1√
2

− 1√
2

0 0 0 0

Fig. 3. QMDD representing the circuit from Fig. 1

are represented by the same node, too, but the edges leading to this node are
annotated with different weights. The edges leading from the child nodes to the
terminals can be determined easily by division of the submatrices. As described
above, the edge weight 1 is omitted as well as the terminal 0 and the edges
leading to it. Instead, they lead to a 0-stub.

3 Property Checking of Quantum Circuits

This section formally defines the problem considered in this work and discusses
previously introduced approaches which address this issue. Afterwards, the gen-
eral idea of our solution is proposed.

3.1 Problem Formulation

In this work, we consider property checking of quantum circuits. Property check-
ing is applied during the hardware design phase in order to check whether a
designed circuit in fact satisfies the specification or not, i.e. whether the circuit
has been designed correctly or not. Since a specification may be very complex,
usually several properties are defined which the circuit has to satisfy. Then,
these properties are individually checked. The properties describe the intended
relation between the inputs and the outputs of the design or they describe re-
quirements which have to be satisfied. If the complete specification is covered
by means of properties and, additionally, a realized circuit satisfies all of them,
then it has been proven that the circuit was designed correctly. Otherwise, the
circuit contains design errors and has to be revised.

Formally a circuit G is considered which realizes the function fG : IBn → IBn

with inputs x1, . . . , xn and outputs x′
1, . . . , x

′
n. The function fP : (fG, X) �→ r

(where X is an input pattern of G and r ∈ IB is the result) evaluates the
property P , i.e. fP maps to 1 if, and only if, the circuit G with the input
pattern X satisfies P . Given that, the property checking problem is defined
by proving that ∀X.fP (fG, X) = 1 holds for a given circuit G and a given
property P .

188 J. Seiter et al.

If fP maps to 1 for all possible input patterns X of G, then the circuit G
satisfies the considered property. However, the evaluation of this formula would
require 2n computations of fG. Instead, it is often easier to determine a sin-
gle counter-example XCEX for which the property is not satisfied. This can be
expressed as ∃XCEX.fP (fG, XCEX) = 0. This requires the evaluation of all 2n

input patterns only in the worst case.
As a result, property checking can be considered as the problem of determining

an input pattern XCEX of G so that G does not satisfy P or to prove that no
such pattern exists.

3.2 Quantum Circuit Verification

The verification of conventional hardware is a well-considered field (see e.g. [13]).
The approaches developed in the last decades are highly optimized and have
been implemented in efficient tools. These accomplishments can be exploited
when reversible circuits are considered exclusively. Since here all operations only
act on Boolean values, it is sufficient to simply map these circuits to conventional
gate libraries and afterwards apply the existing methods such as bounded model
checking [16] or equivalence checking [17].

In contrast, quantum circuits contain non-Boolean values and often have non-
Boolean outputs. As a consequence, the approaches developed so far for Boolean
circuits are not applicable. Yet only few formal verification approaches for quan-
tum circuits exist. In [18], the quantum model checker QMC has been introduced.
This model checker has specifically been developed to check properties of quan-
tum protocols. However, it is uncertain whether this approach is applicable to
other more generic quantum algorithms or how the model checker behaves when
used for the verification of larger systems. To the best of our knowledge, no
studies in these fields have been published so far.

Instead, the majority of verification approaches for quantum circuits applies
simulation techniques [19–21]. In order to simulate a circuit, several stimuli,
i.e. input patterns, are generated and the respective output patterns are pro-
duced. Each of these output patterns needs to be checked against the specifi-
cation in order to determine the correctness of the design. On the one hand,
simulation is a very fast and inexpensive method, especially for determining a
circuit’s behavior when only a few cases are concerned. As a result, it can be
used to ensure the correctness for several critical or common input patterns.
However, a circuit with n variable inputs has 2n possible input patterns and,
thus, coverage of the entire behavior through simulation is intractable as all 2n

patterns need to be simulated resulting in an impracticably large run-time. Ad-
ditionally, the operations performed by quantum circuits are usually described
by complex-valued matrices. As many simulation approaches apply matrix mul-
tiplication, they have high memory requirements as well.

In order to especially address the latter problem, the simulator QuIDDPro
has been introduced in [21]. QuIDDPro employs a particular data-structure, so-
called Quantum Information Decision Diagrams (QuIDDs), to simulate quantum
circuits. QuIDDs have been explicitly developed in such a way that they allow

Property Checking of Quantum Circuits Using QMDDs 189

Circuit realizing
the function

Circuit realizing
the property

Realization

Property

p=1?

p=1? �→ p

0?
0?

Fig. 4. Proposed verification flow

efficient quantum circuit simulation. Existing evaluations show that QuIDDPro
outperforms all other known simulation approaches when only one simulation
run is considered. However, QuIDDPro is naturally bounded to the number
of qubits that correspond to the inputs which again leads to an exponentially
growing run-time for a complete simulation.

Since simulation of conventional circuits leads to similar problems, conven-
tional hardware is usually either entirely verified by means of formal methods
or just validated by means of partial simulation for certain crucial cases. In this
work, we aim for a verification of quantum circuits. That is, we introduce a for-
mal verification approach for quantum circuits in order to provide an alternative
to the existing simulation-based approaches.

3.3 General Idea

Figure 4 outlines the underlying idea of the verification flow proposed in this
paper. The input to the flow are the circuit under verification and the property
to be checked. The property is represented by means of the function fP realized
as a circuit.

Having this, a naïve property check could be done as follows. Each possible
input combination is assigned to the inputs of the original circuit which is used
to evaluate the corresponding output assignment. Then, both assignments are
given as input to the circuit realizing the property (see center of Fig. 4). If the
output signal fP is 1 for each input assignment, the property holds. Although
this process can be simplified by combining both circuits and connecting the
inputs and outputs of the original function to the property circuit, this will not
change the complexity of the verification procedure.

However, with certain modifications which are outlined in detail in the next
section, both circuits can be combined and represented by a QMDD. When
constructing the corresponding QMDD in a way such that the property signal fP

is located at the top-most line, possible input/output mappings of fP will be
represented by the root node of the QMDD. This easily allows to check whether
there exists an input assignment such that fP evaluates to 0, i.e. such that the
property is not satisfied. In fact, it just has to be checked whether the first two
successors from the root node lead to path to 1 (see right-hand-side of Fig. 4).
In this case a mapping to fP = 0 exists, i.e. there is a input assignment which
violates the property. Hence, checking whether the property holds can be done

190 J. Seiter et al.

0 y1

1 y2

f1 f1

f2 f2

H
H

H

(a) Given circuit G

0 p

0

1

f1

f2

y1

y2

f1

f2

0

In
p
u
ts

O
u
tp

u
ts H

(b) Property circuit GP

0 �→ p

0 �→ −

1 �→ − 1 �→ −

0
0

0

0
0

(c) QMDD

Fig. 5. Application of the proposed verification flow

with a constant number of look-ups after the QMDD has been determined. This
general idea is illustrated by the following example.

Example 3. Figure 5(a) shows a generalization of the quantum circuit realiz-
ing the Deutsch algorithm [22]. Usually the oracle is the input to the Deutsch
problem and the circuit solely consists of constant inputs. The generalization al-
lows for configuring all possible four oracles using two additional circuit lines f1

and f2 which combinations lead to all truth tables 00, 01, 10, and 11 representing
constant 0, identity, negation, and constant 1, respectively.

The property represented by the circuit in Fig. 5(b) will explicitly evaluate the
possible functions and afterwards compare the result gathered from the original
circuit on signal y1. A (partial) QMDD representing the combined circuit is
depicted in Fig. 5(c)1. Since the first two successors of the root node point to 0 ,
no input assignment exists which maps to fP = 0. Hence, the property has been
proven to be true, i.e. the circuit indeed realizes the Deutsch algorithm.

4 Implementation

This section describes the algorithm implementing the idea proposed above and
illustrates the resulting verification flow by means of an example. After a brief
overview of the main steps, these steps are discussed in detail.

Given are a quantum circuit G and a property P to be verified. The prop-
erty P is evaluated by fP (see Sect. 3.1) which is represented by a circuit GP

over the inputs and outputs of G. The property is satisfied if fP always evaluates
to 1, i.e. fP is tautologous. The aim of the procedure is to obtain a QMDD which
represents the result fP . Consequently, G and GP have to be altered in such a
way that a combined circuit of the two, in the following denoted by GC , can
1 Note that this QMDD has been modified to handle constant inputs. This is described

in detail in the next section.

Property Checking of Quantum Circuits Using QMDDs 191

be used as a basis for the QMDD Q. Since QMDDs can only represent unitary
functions, this particularly includes a transformation of GC into a unitary func-
tion realization. To this end, additional circuit lines (assuming constant inputs)
need to be added. Those lines have to be explicitly handled when obtaining the
result of the property check (i.e. fP from the QMDD).

Overall, the respective algorithm executes the following steps.

1. Combine G and GP to GC and make GC unitary
2. Build a QMDD Q for GC

3. Modify the QMDD Q such that additional circuit lines (assuming constant
inputs) are handled

4. Obtain the result of the property check from the root node of the QMDD Q

In the following sections, these steps are described in detail.

4.1 Combine the Circuits and Ensure Unitary

The goal of the first step is to alter both circuits G and GP in such a way that
they can be combined into one circuit GC by concatenating G and GP . Based
on GC , a QMDD is built in the next step.

First, G and GP have to be defined over the same set of variables and the
variables have to be in the same order, because they cannot be combined into
one circuit otherwise. Consequently, both circuits are checked for variables which
occur exclusively in the respective circuit. These variables are then added to the
other circuit in such a way that the variable ordering is the same for G and GP .

Since from the combined circuit GC a QMDD is supposed to be created,
GC has to represent a unitary circuit which therefore also applies for G and
GP . While it already holds for G, GP may be non-unitary and, thus, has to
be extended accordingly. Here, existing approaches for embedding (introduced
e.g. in [23]) can be exploited. Furthermore, in order to ensure that also the
combined circuit GC is unitary, the fan-outs have to be removed which are
caused by the fact that both G and GP use the same inputs. This is done by
adding additional circuit lines and gates that keep copies of the inputs. The
following example illustrates this step.

Example 4. Consider again the circuits in Figs. 5(a) and 5(b) representing a
given circuit G and a property circuit GP . As can be seen, three additional
lines (assuming constant values) are necessary in order to properly embed GP .
Afterwards, both circuits are combined to GC as shown in Fig. 6(a). For this
purpose, four gates are added replacing the non-unitary fan-outs, i.e. copying
the values of the inputs y1, y2, f1, and f2.

4.2 Build a QMDD from the Combined Circuit

Before building a QMDD from the combined circuit, the lines are reordered in
such a way that all lines assuming a constant input value are placed at the top of

192 J. Seiter et al.

0 p

0
0
0
0

y1

y2

0
f1

f2

H
H

H
H

(a) Combined circuit

0 �→ p

0 �→ − 0 �→ −

(b) QMDD represent-
ing the complete func-
tion

Fig. 6. Intermediate steps of the proposed verification flow

the circuit. Such a structure simplifies the succeeding steps. Afterwards, a QMDD
is built representing GC , i.e. the combined circuit of G and GP . However, the
resulting QMDD cannot be used to determine the result of the property check
as it does not explicitly handle constant inputs.

Example 5. Figure 6(b) shows the QMDD representing the combined circuit GC

from Fig. 6(a). As can be seen, constant input values have not been considered
yet. In fact, the root node has four outgoing edges leading to non-terminal nodes.
That is, all possible input/output mappings of the first line (including output fP)
are considered. The underlying circuit however assumes a constant input 0 at
this line, i.e. only the first and the third outgoing edge should be considered.
Hence, the QMDD needs to be modified as described in the following step.

4.3 Modify the QMDD

Obtaining a QMDD Q which also takes constant input values into consideration
requires altering the QMDD in order to avoid an incorrect result. As a con-
sequence, each node representing a line with a constant input value has to be
checked. If such a node has outgoing lines representing an input/output assign-
ment which does not occur in the circuit, then the respective edge is replaced
by an edge leading to 0 .

As a result from eliminating edges in the QMDD, it can occur that nodes
remain whose edges all point to 0 . Since these nodes never appear in paths from
the root node to 1 and thus do not contribute to valid input/output mappings,
they can be removed from the QMDD. The resulting QMDD represents the
combined circuit GC and additionally considers constant input values.

Example 6. Figure 5(c) shows the QMDD after edges and nodes have been elimi-
nated as described above. Now, the root node has only one outgoing edge leading
to a non-terminal node which corresponds to the defined constant input value.

Property Checking of Quantum Circuits Using QMDDs 193

The second and fourth edge have been eliminated through edge elimination,
while the first edge has been eliminated in the course of node elimination.

4.4 Determine the Result

After the steps described above, the resulting QMDD represents all input/output
mappings considering the given circuit G, the given property P , and the possibly
assumed constant inputs. Of particular interest is whether there exists a mapping
to fP = 0. If that is the case, it has been shown that the resulting circuit does not
hold the property. Since fP is the top-most variable and, thus, represented by the
root node of Q, the existence of such a mapping can be obtained by evaluating
the root node and its outgoing edges. An existing mapping is indicated by the
existence of the respective edge.

If the property check does not hold, then the first line maps from 0 to 0 and
a counter-example can be derived from the QMDD. Such a counter-example
is an input pattern for which the property is not satisfied. It can be obtained
by traversing a path from the top-most node to 1 which starts with the first
outgoing edge of the top-most node.

Example 7. The root node of the QMDD in Fig. 5(c) indicates the result of the
property check. Only the third edge leads to a non-terminal node. This edge
represents the mapping 0 �→ 1 for the top-most line in the combined circuit.
Hence, fP always maps to 1 and, thus, the property always holds.

5 Experimental Results

The verification flow introduced in the previous sections has been implemented
and evaluated by verifying several instances of the Grover search and the Deutsch
algorithm. The realizations for both algorithms have been generalized as de-
scribed in Sect. 3.3. The corresponding properties were automatically synthe-
sized. All operations concerning QMDDs, including the construction, were pro-
vided as a C-library [15]. The experiments have been conducted on a 2.3 GHz
Intel Core i5 with 2GB main memory running Linux as a virtual machine.

The results of the experiments are shown in Table 1. They were compared to
those obtained by the simulator QuIDDPro [21] which was applied to the same
circuits as the proposed verification procedure. In addition to that, we distin-
guished between holding and failing property checks. For satisfying properties,
the circuits have been completely simulated using QuIDDPro. For failing proper-
ties the simulation was only performed until a counter-example was determined.

The table is structured as follows. In the first column, the name of the circuit
which was verified is given. In the second and third column, the number of lines
and gates is denoted, split into the number of the combined and the original
circuits to be checked. The remaining columns show the run-times of QuIDDPro
and the QMDD-based verification flow for holding and failing properties.

In case of satisfying properties, the QMDD-based verification approach is
faster than QuIDDPro except for one test case. For the smaller circuits, the

194 J. Seiter et al.

Table 1. Results for passing property checks

Holding properties Failing properties
Circuit Lines Gates QuIDDPro QMDD QuIDDPro QMDD
Grover2 6 (5) 26 (19) 0.07 0.01 0.03 1.65
Grover3 8 (7) 111 (83) 0.72 0.03 0.11 1.67
Grover4 10 (9) 117 (107) 2.08 2.83 0.12 1.72
Grover5 12 (11) 144 (132) 5.60 4.48 0.16 1.94
Grover6 14 (13) 165 (151) 10.65 1.63 0.24 1.68
Grover7 16 (15) 263 (247) 33.27 1.70 0.36 1.66
Grover8 18 (17) 229 (211) 79.98 3.03 0.28 8.00
Grover9 20 (19) 182 (162) timeout 16.98 0.16 18.00
Grover10 22 (21) 201 (179) timeout 230.48 0.19 244.69
Deutsch 12 (6) 21 (8) 0.04 0.01 0.02 1.66
Deutsch-Josza 23 (22) 75 (22) 0.14 0.03 0.07 1.67

run-times are similar. However, as the number of lines and gates increases, the
QMDD-based approach becomes much faster than QuIDDPro. In particular,
the QMDD-based approach could still be applied for the circuits Grover9 and
Grover10, while the simulation with QuIDDPro does not finish. This occurs due
to the complete simulation which has to be performed by QuIDDPro.

For failing property checks, the results are reversed. Whereas QuIDDPro per-
forms very good, the run-time of the QMDD-based approach is nearly identical
to that of the holding property checks. Since QuIDDPro does not need to com-
pletely simulate the circuits, but terminates the simulation as soon as a counter-
example is determined, the run-time can be reduced significantly. In contrast,
the QMDD is built completely for all possible input/output mappings instead
of particular simulation patterns.

Although the simulation performs much faster for failing property checks, the
proposed verification flow is more robust. As a result, the run-time of the veri-
fication does not depend on the outcome of the verification whereas simulation
can lead to a timeout.

6 Conclusions

In this work, a new verification approach for quantum circuits has been pre-
sented. We described how QMDDs can be applied in order to prove correctness
of a design and evaluated our approach by verifying realizations of Grover’s algo-
rithm and Deutsch’s algorithm. In contrast to QuIDDPro, one of the best known
quantum circuit simulators, the run-time of our approach is not dependent on
the result of the property check and can prove correctness of a design much
faster than the simulator.

Acknowledgments. We would like to sincerely thank D. Michael Miller for
providing us with an implementation of the QMDD package introduced in [15]
and for many helpful discussions. This work was supported by the German Re-
search Foundation (DFG) (DR 287/20-1) and the German Academic Exchange
Service (DAAD).

Property Checking of Quantum Circuits Using QMDDs 195

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, New York (2000)

2. Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.A.: Quantum logic
synthesis by symbolic reachability analysis. In: Malik, S., Fix, L., Kahng, A.B.
(eds.) Design Automation Conference, pp. 838–841. ACM (June 2004)

3. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. In:
Tang, T. (ed.) Asia and South Pacific Design Automation Conference, pp. 272–275.
ACM Press (January 2005)

4. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Synthesis of Elementary
Quantum Gate Circuits for Reversible Functions with Don’t Cares. In: Int’l Symp.
on Multiple-Valued Logic, pp. 214–219 (May 2008)

5. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum Circuit Sim-
plification and Level Compaction. IEEE Trans. on CAD 27(3), 436–444 (2008)

6. Soeken, M., Wille, R., Dueck, G.W., Drechsler, R.: Window optimization of re-
versible and quantum circuits. In: Int’l Symp. on Design and Diagnostics of Elec-
tronic Circuits and Systems, pp. 341–345 (April 2010)

7. Yuan, J., Shultz, K., Pixley, C., Miller, H., Aziz, A.: Modeling design constraints
and biasing in simulation using BDDs. In: Int’l Conf. on Computer-Aided Design,
pp. 584–590 (November 1999)

8. Bergeron, J.: Writing Testbenches Using SystemVerilog. Springer (2006)
9. Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer (January

2006)
10. Wille, R., Große, D., Haedicke, F., Drechsler, R.: SMT-based Stimuli Generation in

the SystemC Verification Library. In: Forum on Specification & Design Languages
(September 2009)

11. Brand, D.: Verification of large synthesized designs. In: Lightner, M.R., Jess, J.A.G.
(eds.) Int’l Conf. on Computer-Aided Design, pp. 534–537. IEEE Computer Society
(1993)

12. Disch, S., Scholl, C.: Combinational Equivalence Checking Using Incremental SAT
Solving, Output Ordering, and Resets. In: Asia and South Pacific Design Automa-
tion Conference, pp. 938–943 (2007)

13. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

14. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

15. Miller, D.M., Thornton, M.A.: QMDD: A Decision Diagram Structure for Re-
versible and Quantum Circuits. In: Int’l Symp. on Multiple-Valued Logic, p. 30.
IEEE Computer Society (May 2006)

16. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 117–148 (2003)

17. Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence Checking of Re-
versible Circuits. In: Int’l Symp. on Multiple-Valued Logic, pp. 324–330. IEEE
Computer Society (May 2009)

18. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A Model Checker for Quantum
Systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547.
Springer, Heidelberg (2008)

196 J. Seiter et al.

19. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev.
A 70, 052328 (2004)

20. Vidal, G.: Efficient Classical Simulation of Slightly Entangled Quantum Compu-
tations. Phys. Rev. Letters 91, 147902 (2003)

21. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Heidelberg (2009)

22. Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer. Royal Society London A 400(1818) (July 1985)

23. Miller, D.M., Wille, R., Dueck, G.: Synthesizing Reversible Circuits for Irreversible
Functions. In: EUROMICRO Symp. on Digital System Design, pp. 749–756 (2009)

	Property Checking of Quantum Circuits Using Quantum Multiple-Valued Decision Diagrams
	Introduction
	Preliminaries
	Quantum Circuits
	Quantum Multiple-Valued Decision Diagrams

	Property Checking of Quantum Circuits
	Problem Formulation
	Quantum Circuit Verification
	General Idea

	Implementation
	Combine the Circuits and Ensure Unitary
	Build a QMDD from the Combined Circuit
	Modify the QMDD
	Determine the Result

	Experimental Results
	Conclusions
	References

