
Circuit Line Minimization
in the HDL-based Synthesis of Reversible Logic

Robert Wille∗ Mathias Soeken∗† Eleonora Schönborn∗ Rolf Drechsler∗†

∗Institute of Computer Science
University of Bremen, 28359 Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH
28359 Bremen, Germany

{rwille,msoeken,eleonora,drechsle}@informatik.uni-bremen.de

Abstract—In the last decade, reversible circuits have been
extensively investigated due to their application in emerging areas
such as quantum computation or low-power design. In the past,
synthesis of reversible circuits was lifted from the Boolean level to
approaches exploiting hardware description languages. However,
existing HDL synthesizers lead to circuits with a significant
number of additional lines.

In this work, we focus on the reduction of additional circuit
lines which are caused by buffering intermediate results. We
propose an approach that reuses these lines as soon as the
intermediate results are not required anymore. Experiments
confirm that this approach decreases the number of circuit lines
by up to two orders of magnitude and 60% on average.

I. INTRODUCTION

Reversible circuits are computing devices realizing bijec-
tions, i.e. one-to-one mappings of the respective input and
output values. Reversibility builds the basis for many emerging
technologies enhancing or even replacing conventional com-
puting devices in the future.

Quantum circuits [1] are a prominent example. They en-
able to solve important problems such as factorization or
database search significantly faster than their conventional
counterparts (see e.g. [2]). In addition, potential benefits of
reversible circuits for CMOS technologies are currently being
considered. While the ongoing miniaturization and power
reduction of non-reversible computing devices eventually will
approach fundamental limits (extrapolated from the observa-
tions by Gordon Moore and Rolf Landauer; see e.g. [3]),
reversible circuits theoretically allow to breach some of these
limits. Prototypical realizations of both quantum circuits and
reversible CMOS-based circuits (e.g. [4], [5]) have already
shown promising results encouraging further research in this
area. Besides that, reversible circuits show promising applica-
tion in the domain of low-power interconnect decoders [6].

Motivated by these achievements, synthesis of reversible
circuits is subject of current research. In the past, mainly
synthesis approaches based on function representations such
as permutations (e.g. [7]), truth tables (e.g. [8]), or positive-
polarity Reed-Muller expansion (e.g. [9]) have been proposed.
One major objective of these algorithms is to keep the number
of circuit lines (i.e. circuit signals) as small as possible. This
originates from the fact that in applications such as quantum
computation, the circuit lines (i.e. qubits) are considered to be
a very restricted resource [1].

However, since the above mentioned approaches are appli-
cable to very small functions only, researchers strived for more
scalable solutions. This led to approaches exploiting more
compact function representations such as decision diagrams
(e.g. [10], [11]) and even a first Hardware Description Lan-
guage (HDL, see [12]). The latter is considered in detail in
this work.

In fact, ensuring reversibility in description languages is a
crucial task which has been studied for software and hardware
languages (see e.g. [13] and [12]). For both, an established
paradigm is to distinguish between (1) reversible assignment
operations which can reversibly modify values and (2) binary
operations which are not necessarily reversible, but ensure a
wide range of language means.

While reversible assignment operations can easily be re-
alized as reversible circuits, the realization of binary opera-
tions is cumbersome. In order to maintain the reversibility,
circuits realizing binary operations make use of additional
lines that buffer intermediate results. Such an effect is even
more emphasized in nested expressions, since existing HDL
synthesizers realize them separately, which often leads to a
significant amount of additional circuit lines (this is covered
in more detail in Section II-C).

In this work, we investigate this characteristic of existing
HDL synthesizers. Inspired by [14], we propose an approach
that reuses additional lines storing intermediate results as
soon as they are not required anymore. Additional circuit
gates are spent for this purpose. Experiments demonstrate
that the proposed approach does not only outperform existing
HDL-based synthesis with respect to the number of lines but
also post-synthesis optimization methods recently introduced
in [15]. In total, the number of lines decreases by up to two
orders of magnitude and 60% on average, while the costs due
to the additional gates remain acceptable.

The remainder of this paper is organized as follows. The
following section reviews the background of this work and
motivates the considered research question. Section III pro-
vides the general idea of the proposed solution which af-
terwards is described in detail in Section IV. Then, certain
characteristics of the new HDL synthesizer are discussed in
Section V. Finally, Section VI provides experimental results
while Section VII concludes this paper.

2012 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4767-1/12 $26.00 © 2012 IEEE

DOI 10.1109/ISVLSI.2012.43

213

0 s

cin cout

a −
b −

g1 g2 g3 g4 g5

Fig. 1. Reversible circuit realizing a full adder

II. BACKGROUND AND MOTIVATION

This section briefly reviews the basics on reversible circuits,
a reversible HDL, as well as the corresponding HDL-based
synthesis. It provides the necessary background to keep the
paper self-contained and additionally illustrates the problem
addressed in this work.

A. Reversible Circuits

Reversible circuits realize functions f : IBn → IBn with
a unique input/output mapping, i.e. bijections. A reversible
circuit G = g1 . . . gd is composed as a cascade of re-
versible gates gi [1]. The inverse of G (representing the func-
tion f−1 and denoted by G−1) can be obtained by cascading
g−1
d g−1

d−1 · · · g−1
1 , where g−1

i is the inverse gate of gi. Since
the self-inverse Toffoli and Fredkin gates are considered in
this paper (see below), gi = g−1

i holds and, thus, G−1 can
simply be obtained by reversing the order of the gates of G.

For a set of signals X = {x1, . . . , xn}, a reversible gate has
the form g(C, T), where C = {xi1 , . . . , xik} ⊂ X is the set
of control lines and T = {xj1 , . . . , xjl} ⊆ X with C ∩ T = ∅
is the non-empty set of target lines. The gate operation is
applied to the target lines if, and only if, all control lines meet
the required control conditions. Control lines and unconnected
lines always pass through the gate unaltered.

In the literature, several types of reversible gates have
been introduced. Usually, circuits realized by Toffoli
gates and Fredkin gates are considered. A Toffoli gate
has a single target line xj and uniquely maps the
input (x1, x2, . . . , xj , . . . , xn) to the output
(x1, x2, . . . , xi1xi2 · · ·xik ⊕ xj , . . . , xn). That is, a Toffoli
gate inverts the target line if, and only if, all control lines
are assigned the logic value 1. A Fredkin gate has two target
lines xj1 and xj2 and interchanges their values if, and only
if, the conjunction of all control lines evaluates to 1.

By definition, reversible circuits can only realize reversible
functions. In order to realize non-reversible functions, addi-
tional circuit lines with constant inputs and garbage outputs
(i.e. don’t care outputs) are applied (see e.g. [16], [17]).
Furthermore, additional circuit lines are also used frequently
in hierarchical synthesis approaches (e.g. [10], [12]).

Example 1: Fig. 1 shows a reversible circuit realization of
a 1-bit adder. Black circles represent control lines while ⊕
and × represent the target lines of a Toffoli and Fredkin gate,
respectively. Since the adder is a non-reversible function, one
additional circuit line is used to realize this function as a
reversible circuit. The gates g1, g2, g4, and g5 are Toffoli gates,
while the gate g3 is a Fredkin gate.

1 module simple-alu(in op(2), in a, in b, out c)
2 if (op = 0) then
3 c ˆ= (a + b)
4 else
5 if (op = 1) then
6 c ˆ= (a - b)
7 else
8 if (op = 2) then
9 c ˆ= (a * b)

10 else
11 c ˆ= (a / b)
12 fi (op = 2)
13 fi (op = 1)
14 fi (op = 0)

Fig. 2. SyReC specification of a simple ALU

B. Reversible HDL
A major motivation of research in the domain of reversible

circuit synthesis is the striving for better scalability in order
to enable the efficient design of complex functionality. Con-
sequently, HDLs became a focus of ongoing research. A first
version of an HDL for reversible circuits named SyReC has
been introduced in [12]. SyReC is based on the reversible
software language Janus [13], which has been enriched by
further concepts (e.g. declaring circuit signals of different bit-
widths), new operations (e.g. bit-access and shifts), and some
restrictions (e.g. the prohibition of dynamic loops). In the
following, we briefly review the main concepts of this HDL
by means of Fig. 2 which depicts a SyReC specification of a
simple arithmetic logic unit1.

As can be seen, a SyReC description includes the decla-
ration of modules and signals of the circuit to be speci-
fied (Line 1). Signals represent non-negative integers as their
sole data type. Furthermore, a variety of statements and expres-
sions are available to specify the functionality of the circuit and
in order to ensure reversibility, these statements must satisfy
certain criteria. For example, in each conditional statement
the if-expression has to be terminated by a corresponding fi-
expression (see e.g. Line 12). Furthermore, statements and
expressions are distinguished between reversible assignment
operations (denoted by ⊕=) and not necessarily reversible
binary operations (denoted by �).

Reversible assignment operations assign values to a signal
on the left-hand side. Therefore, the respective signal must not
appear in the expression on the right-hand side. Furthermore,
only a restricted set of assignment operations exists, namely
increase (+=), decrease (-=), and bit-wise XOR (ˆ=). These
operations preserve the reversibility (i.e. it is possible to
compute these operations in both directions).

In contrast, binary operations, e.g. arithmetic, bit-wise,
logical, or relational operations, may not be reversible. Thus,
they can only be used in right-hand expressions which pre-
serve the values of the respective inputs. In doing so, all
computations remain reversible since the input values can be
applied to reverse any operation. For example, to specify the
multiplication in Line 9, a new free signal c in combination
with a reversible assignment operation is applied.

1For a more detailed treatment, we refer to [12] as well as to the detailed
documentation provided at the RevLib benchmark webpage [18].

214

a a⊕=b⊕
b b

(a) a ⊕= b

0 a� b�
a a

b b

(b) (a � b)

a aˆb

b b

(c) a ˆ= b

0 a&b

a a

b b

(d) (a & b)

c cˆ=a&b

a a

b b

(e) c ˆ= (a&b)

c c⊕=a� b⊕
0 ←add. line�
a a

b b

a� b

(f) c ⊕= (a�b)

Fig. 3. Circuits obtained by HDL-based synthesis

C. HDL-based Synthesis
The application of HDLs enables the design of reversible

circuits on a higher level. For example, the arithmetic logic
unit can be specified much easier using the code from Fig. 2
in comparison to methods based on truth tables or decision
diagrams. However, the specified circuits still need to be
synthesized. For this purpose, a hierarchical synthesis method
is applied [12]. Here, existing realizations of the individual
operations (i.e. building blocks) are combined so that the
desired circuit is built. For the realization of these building
blocks, we refer to previous work (e.g. [19], [20]).

In the following, we use the notation depicted in Fig. 3(a)
and Fig. 3(b) to denote a building block for a reversible
assignment operation and for a binary operation, respectively.
Circuit lines drawn through the blocks represent the signals
which values are preserved. Since binary operations represent
non-reversible operations, a sole circuit realization usually
requires additional circuit lines with constant inputs 0.

Example 2: Fig. 3(c) shows the realization of a bit-wise
XOR (i.e. a ˆ= b) – the simplest reversible assignment opera-
tion. In this case, a bit-width of 1 is assumed for the signals a
and b. If signals with a larger bit-width are considered, a
Toffoli gate is applied analogously for each bit. Fig. 3(d) shows
a realization of an AND operation – a typical binary operation.
As the AND operation is non-reversible, an additional circuit
line with a constant input is required.

Since binary operations can only be applied in combination
with a reversible assignment operation, additional circuit lines
are not necessary in general. As an example, Fig. 3(e) shows
the realization for c ˆ= (a & b) where no additional line is
applied, but the signal representing c is used instead. However,
determining the respective circuits for arbitrary combinations
of reversible assignment operations and binary operations is
a cumbersome task. Thus, existing HDL synthesizers make
use of additional circuit lines where intermediate results of
binary operations are buffered before the building block of
the corresponding reversible assignment operation is applied.
This is illustrated in Fig. 3(f).

This procedure leads to a significant number of additional
circuit lines which is commonly seen as disadvantageous. This
originates from the fact that in many application areas of
reversible circuits (in particular in the domain of quantum
computation [1]), the number of circuit lines is a highly limited
resource. As a result, keeping the number of circuit lines
as small as possible is very important and has hardly been
addressed in HDL-based synthesis so far.

a a⊕=b� c⊕
0 −Gb�c

b b

c c

d d⊕=e� f⊕
0 −Ge�f

e e

f f

(a) Original synthesis

a a⊕=b� c⊕
0 Gb�c G−1

b�c

b b

c c

d d⊕=e� f⊕
0 0Ge�f G−1

e�f

e e

f f

(b) Proposed idea

Fig. 4. General Idea

Motivated by this, in this paper we present a synthesis
approach for HDL descriptions of reversible circuits which
aims for the determination of efficient realizations with respect
to the number of lines.

III. GENERAL IDEA

In this section, we present the idea behind our approach. The
goal is to synthesize HDL descriptions of reversible circuits
keeping the number of circuit lines as small as possible. For
this purpose, an approach is proposed which realizes each
statement in the HDL code in three steps.

1) Compose a sub-circuit G� realizing the right-hand side
expression of the statement using the existing build-
ing blocks of the binary operations. The result of the
expression is buffered by means of additional circuit
lines (see Fig. 3(b)).

2) Compose a sub-circuit G⊕ realizing the overall state-
ment using the existing building blocks of the reversible
assignment operation together with the buffered result
of the right-hand side expression (see Fig. 3(f)).

3) Add the inverse circuit from Step 1, i.e. G−1
� , to the

circuit in order to set the circuit lines buffering the result
of the right-hand side expression back to the constant 0.

Example 3: The general idea is illustrated by means of the
following two generic HDL statements:

a ⊕= (b � c);
d ⊕= (e � f);

Fig. 4 sketches the resulting circuit after applying the
steps outlined above. The first two sub-circuits Gb�c and
Ga⊕=b�c ensure that the first statement is realized. This
is equal to the established procedure from Fig. 3(f) and
leads to additional lines with constant inputs (highlighted
thick). But in contrast to existing HDL synthesizers, a further

215

c0 c′0
c1 c′1
0 0

0 0
a0 a0
a1 a1

b0 b0
b1 b1

Ga+b G−1
a+b

Gcˆ=a+b

Fig. 5. Synthesizing c ˆ= (a+b)

sub-circuit G−1
b�c is applied afterwards. Since G−1

b�c is the
inverse of Gb�c, this sets the circuit lines buffering the result
of b� c back to the constant 0. As a result, these circuit lines
can be reused in order to realize the following statements as
illustrated for d⊕=e� f in Fig. 4(b).

Following this procedure, each statement can be realized
with zero garbage outputs. While this sketches the general
idea, the implementation for the respective statements is
described in the following.

IV. IMPLEMENTATION

In this section, the proposed approach is described. The
general structure of our HDL synthesizer follows the basic
concepts of [12]. That is, a hierarchical synthesis method is
implemented that traverses each statement of the HDL de-
scription and applies existing building blocks of the individual
operations in order to combine them so that the desired circuit
is built.

Common reversible HDL statements such as <=> (swap) or
skip do not require special consideration as they already can
be realized without additional circuit lines. For the remain-
ing statements, including all reversible assignment operations
with arbitrary combinations of binary operations, conditional
statements, loops, and sub-modules, the proposed synthesis
methods are described.

Reversible Assignment Statements: In order to realize state-
ments of the form a⊕=e with e being an arbitrary expression
composed of various binary operations, basically the respective
building blocks are orchestrated as already illustrated in Fig. 4.
First, a sub-circuit realizing the expression e, i.e. the right-
hand side of the statement, is created. This requires additional
lines to store the result of e. Next, a sub-circuit realizing the
reversible assignment operation is created as well as a sub-
circuit reversing the result of e into a constant value. The
latter is done by reversing the order of gates of the first sub-
circuit. Finally, all three sub-circuits are composed leading to
the desired realization of the statement.

Example 4: Fig. 5 shows the circuit obtained by synthesiz-
ing cˆ=(a+b) using the proposed approach. The respective
sub-circuits Ga+b, Gcˆ=a+b, and G−1

a+b are highlighted by

dashed rectangles. As can be seen, G−1
a+b is obtained by

reversing the order of the gates of Ga+b.

Applying this procedure, any arbitrary combination of re-
versible assignment operations and binary operations can be
realized in a garbage-free manner. That is, required additional
circuit lines can be reused for other statements and operations.

0 0Gif Gif

a a

b b

th
en

else

(a) Simplified conditional statement

0 0Gif Gfi

a a

b bth
en

else

(b) General conditional statement

Fig. 6. Synthesizing conditional statements

Conditional Statements: In order to realize conditional
statements, a sub-circuit Gif evaluating the respective if-
expression is created. The intermediate results of the respective
expression are handled analogously to assignment statements
as described above. Furthermore, an additional circuit line is
applied to store the Boolean result of that expression. Then,
control connections are applied to activate either the then- or
the else-block. More precisely, control lines are added to all
gates in the realization of the respective block. As a result, the
gates in these blocks are triggered if, and only if, the result of
the if-expression evaluates to 1 or 0, respectively. A NOT gate
(i.e. a Toffoli gate without control lines) is thereby applied to
flip the value of the additional line so that the gates of the
else-block can be controlled as well. This flip is later restored
by another NOT gate. Afterwards, the original constant value
of the additional line is restored by applying the first sub-
circuit Gif again.

Example 5: Fig. 6(a) illustrates the procedure assuming that
the if-expression depends on a and b.

While this procedure can be applied in most of the cases
(among others, also for the HDL code provided in Fig. 2), a
problem arises if the if-expression depends on values which
are modified within the then- or else-block. Then, the value of
the additional line cannot be reversed by applying Gif , but a
realization of the corresponding fi-expression.

Example 6: Consider the following HDL code:

if (a = b) then
a += 2

else
b += 2

fi (a = (b+2))

Here, the if-expression depends on values a and b which are
modified in the then- and in the else-block, respectively. In
order to ensure reversibility also in such cases, reversible
description languages require the definition of a corresponding
fi-expression. To realize a circuit for such an HDL description,
the same approach as described above is applied, except for
the last sub-circuit. Here, instead of Gif a newly generated
sub-circuit realizing Gfi is applied. Fig. 6(b) illustrates this
procedure. Now the additional line is not reversed by apply-
ing Gif but by applying Gfi.

216

0 0

⊕ ⊕ ⊕
� � � � � �

3 2

1 1 3 3 2 2

1 3

Fig. 7. Effect of expression size

Note that this procedure is recursively applied for nested
conditional statements. Accordingly, the number of required
additional lines grows linearly with the depth of these nested
statements.

Loops and Calls: The realization of loops and module calls
is treated in a straight forward manner exploiting the proce-
dures proposed above. More precisely, calls are substituted
by the corresponding statements inside the body of the call.
Loops are realized by explicitly cascading (i.e. unrolling) the
respective statements within a loop block according to the
fixed and finite number of iterations.

V. DISCUSSION

As the experiments in the next section confirm, applying the
approach presented above leads to circuits with a significantly
smaller number of circuit lines. In fact, every statement is
synthesized with zero garbage outputs. Consequently, the
number of additional lines can be determined by the statement
that requires the largest number of additional lines in order to
buffer intermediate results.

Example 7: Consider a sequence of three statements to be
synthesized. Additionally, assume that 1, 3, and 2 circuit lines
are needed to buffer the intermediate results of the respective
expressions. Then, in total max{1, 3, 2} = 3 additional circuit
lines are needed to realize the respective circuit. Fig. 7
illustrates how these circuit lines are applied. For comparison,
existing HDL synthesizers need 1+3+2 = 6 additional circuit
lines.

The number of additional circuit lines can be reduced further
in many cases by restructuring the HDL code. In general,
larger expressions lead to more intermediate results to be
buffered. Thus, if the same functionality can be represented
by more, but smaller statements, a further reduction in the
number of lines is possible.

Example 8: Consider the following statement:

a += ((b & c) + ((d * e) - f))

In order to execute the outer expression (i.e. the addition
operation), the intermediate results of the inner expressions
(b & c), (d * e), and ((d * e) - f) are buffered at the same
time. Considering 32-bit signals, this requires 96 circuit lines
(in addition to 32 circuit lines needed to buffer the result of
the outer expression itself, i.e. 128 in total).

In contrast, the same functionality can also be described by
the following statements

a += (b & c);
a += (d * e);
a -= f ;

Here, the respective binary operations are applied separately
with an assignment operation. Hence, no more than 32 circuit
lines are needed to buffer the intermediate results.

A price for the smaller number of circuit lines is an expected
increase in the number of gates, and thus in the gate costs.
However, the number of lines usually is seen as the more
important metric. Additionally, the increase in the gate costs
is bounded. For example, in comparison to existing HDL
synthesizers where the building blocks G� and G⊕ are applied
for each assignment statement, the method proposed here uses
just one more building block G−1

� . Since G−1
� is the inverse

of G�, the circuit can at most double its gate cost. In fact, as
the experiments in the next section show, the actual increase
in the gate costs is often significantly smaller than this upper
bound.

VI. EXPERIMENTAL EVALUATION

We implemented an HDL synthesizer in C++ following
the concepts introduced in Section IV and the optimizations
discussed in Section V. Afterwards, we evaluated the approach
using a broad variety of HDL descriptions provided in the
SyReC language including components of a 32-bit processor,
counters, or circuits performing arithmetic computations. Fi-
nally, we compared the obtained results to circuits generated

• with the HDL synthesizer presented in [12] and

• with the HDL synthesizer presented in [12] and addition-
ally optimized with respect to the number of lines using
the method presented in [15] and available in RevKit [21].

All evaluations have been conducted using a 64-bit Intel
machine with 2.66 GHz and 4 GB of memory running Linux.

Table I summarizes all results obtained. The first column
gives the name of the respective benchmarks, i.e. HDL de-
scriptions. Afterwards, for each approach the total number of
circuit lines (lines), the respective amount of additional circuit
lines (a.l.), the number of gates (gates), the total gate costs2

(costs), and the run-time (in CPU seconds) required to obtain
the results are reported for each considered evaluation. Finally,
percentage differences of the numbers for additional lines and
costs are given in the last columns. More precisely, the results
obtained by the HDL synthesizer from [12] are compared to
(1) the results obtained by additionally applying [15] (denoted
by [12] vs. [12]+[15]) and (2) to the results obtained by the
proposed approach (denoted by [12] vs. proposed).

Based on the results, several interesting conclusions can be
drawn. Applying post-synthesis optimization helps in some
cases (e.g. cond1, call2), but has no effect for the majority of
considered benchmarks. This can be explained by the nature of
the applied optimization paradigm. In [15], a window-based
re-synthesis scheme is used in order reduce the number of
lines. The applicability of this approach is limited by the size
of the respective windows. Since circuits obtained by HDL
descriptions usually are composed of building blocks larger
than the applicable window size, optimizations can rarely be
obtained. Furthermore, the re-synthesis requires much more
run-time and sometimes even exceeds the applied timeout of
1000 CPU seconds (denoted by TO).

2We only considered the established quantum cost metric (according to the
table from [21]) in our evaluation.

217

TABLE I
EXPERIMENTAL RESULTS

Benchmark Previously introduced approaches Proposed Approach Difference (in %)
HDL synthesizer from [12] [12] + Line Reduction [15] [12]vs.[12]+[15] [12]vs. proposed

lines a.l. gates costs time lines a.l. gates costs time lines a.l. gates costs time a.l. costs a.l. costs
cpu alu 5311 5107 20851 2363160 7.14 5311 5107 20851 2363160 TO 255 51 42169 4692080 0.85 0.00 0.00 99.00 -98.55
for 704 672 4536 9744 0.13 704 672 4536 9744 TO 64 32 4546 9754 0.02 0.00 0.00 95.24 -0.10
fibonacci2 543 444 7625 53661 0.10 543 444 7625 53661 TO 132 33 9236 64284 0.04 0.00 0.00 92.57 -19.80
plus10 160 128 864 1856 0.01 160 128 864 1856 8.75 64 32 866 1858 0.01 0.00 0.00 75.00 -0.11
alu2 235 137 4227 152852 0.06 233 135 4235 152953 53.03 133 35 8328 303474 0.06 1.46 -0.07 74.45 -98.54
simple alu 235 137 15764 1851487 0.23 233 135 15772 1851588 253.01 133 35 31402 3700744 0.36 1.46 -0.01 74.45 -99.88
cond1 169 103 295 811 0.01 99 33 341 3539 10.20 99 33 440 1306 0.01 67.96 -336.37 67.96 -61.04
logic unit 203 105 385 6562 0.02 201 103 393 6663 3.03 133 35 612 10478 0.01 1.90 -1.54 66.67 -59.68
call2 160 64 496 992 0.01 128 32 465 961 1.03 128 32 496 992 0.01 50.00 3.13 50.00 0.00
call1 224 64 560 6066 0.01 224 64 560 6066 1.29 192 32 812 6566 0.02 0.00 0.00 50.00 -8.24
varops 288 192 1432 2928 0.02 276 180 1703 9766 45.78 192 96 2120 4368 0.02 6.25 -233.54 50.00 -49.18
cond2 69 3 1001 15113 0.01 69 3 1001 15113 0.01 68 2 1004 15124 0.01 0.00 0.00 33.33 -0.07
cond3 37 3 137 37817 0.01 37 3 137 37817 0.01 36 2 140 38524 0.01 0.00 0.00 33.33 -1.87
cpu pc 134 36 326 4632 0.01 133 35 325 4639 0.24 132 34 338 4656 0.01 2.78 -0.15 5.56 -0.52

Average: 6.94 -29.92 61.97 -35.54
Legend of columns:

lines: total number of circuit lines a.l.: respective amount of additional circuit lines gates: number of gates time: required run-time
[12] vs. [12]+[15]: percentage differences between the results obtained by [12] and the results obtained by additionally applying [15]
[12] vs. proposed: percentage differences between the results obtained by [12] and the results obtained by the proposed approach

In contrast, the proposed approach enables reductions
in the number of additional lines for all cases. Most of
the achieved reductions are considerably large. In the best
case (cpu alu), the number of additional circuit lines can be
reduced from 5107 to 51, i.e. by two orders of magnitude. On
average, improvements by 60% are observed.

As discussed in Section V, these achievements come at the
expense of larger gate costs. However, the increase in the gate
costs is acceptable considering that usually the number of lines
is seen as the more important metric.

Finally, the proposed improvements do not affect the run-
time efficiency of the actual synthesis. The HDL synthesizer
still generates all results in almost no time.

VII. CONCLUSION

In this work, we proposed an HDL synthesizer generating
reversible circuits with a significantly smaller amount of
additional lines. Intermediate results from binary operations
are reversed as soon as they are not required anymore.
Additional gates are used for this purpose. As confirmed by
experiments, our solution leads to reversible circuits with 60%
less additional lines on average at the expense of an acceptable
increase of the total gate costs.

Using the proposed approach, now the number of additional
circuit lines solely depends on the statement that requires
the largest number of additional lines to buffer intermediate
results. As discussed in Section V, this amount can further be
decreased by restructuring HDL statements. Besides that, these
lines can only be removed if corresponding building blocks
for the respective ream of possible combinations between
reversible assignment operations and binary operations can be
provided. As a result, the proposed approach presents a basis
for further research which is left for future work.

ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (DFG) (DR 287/20-1).

REFERENCES

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[2] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” Foundations of Computer Science, pp. 124–134, 1994.

[3] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scaling – a gedanken model,” Proc. of the IEEE,
vol. 91, no. 11, pp. 1934–1939, 2003.

[4] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quan-
tum factoring algorithm using nuclear magnetic resonance,” Nature, vol.
414, p. 883, 2001.

[5] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz, “Experimental verification of Landauer’s principle linking
information and thermodynamics,” Nature, vol. 483, pp. 187–189, 2012.

[6] R. Wille, R. Drechsler, C. Oswald, and A. Garcia-Ortiz, “Automatic
design of low-power encoders using reversible circuit synthesis,” in
Design, Automation and Test in Europe, 2012, pp. 1036–1041.

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp.
710–722, 2003.

[8] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[9] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. on CAD, vol. 25, no. 11, pp.
2317–2330, 2006.

[10] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[11] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,” in
ASP Design Automation Conf., 2012, pp. 85–92.

[12] R. Wille, S. Offermann, and R. Drechsler, “SyReC: A programming
language for synthesis of reversible circuits,” in Forum on Specification
and Design Languages, 2010, pp. 184–189.

[13] T. Yokoyama and R. Glück, “A reversible programming language and its
invertible self-interpreter,” in Symp. on Partial evaluation and semantics-
based program manipulation, 2007, pp. 144–153.

[14] H. B. Axelsen, “Clean translation of an imperative reversible program-
ming language,” in Int’l Conf. on Compiler Construction, 2011, pp.
144–163.

[15] R. Wille, M. Soeken, and R. Drechsler, “Reducing the number of lines
in reversible circuits,” in Design Automation Conf., 2010, pp. 647–652.

[16] D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. on CAD, vol. 23, no. 11, pp. 1497–1509, 2004.

[17] R. Wille, O. Keszöcze, and R. Drechsler, “Determining the minimal
number of lines for large reversible circuits,” in Design, Automation
and Test in Europe, 2011, pp. 1204–1207.

[18] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.

[19] Y. Takahashi and N. Kunihiro, “A linear-size quantum circuit for addition
with no ancillary qubits,” Quantum Information and Computation, vol. 5,
pp. 440–448, 2005.

[20] S. Offermann, R. Wille, G. W. Dueck, and R. Drechsler, “Synthesizing
multiplier in reversible logic,” in IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems, 2010, pp. 335–340.

[21] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: An Open
Source Toolkit for the Design of Reversible Circuits,” in Reversible
Computation 2011, ser. Lecture Notes in Computer Science, vol. 7165,
2012, pp. 64–76, RevKit is available at www.revkit.org.

218

