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Abstract-The steadily increasing complexity of the design of 
embedded systems led to the development of both an elaborated 
design flow that includes various abstraction levels and corre­
sponding methods for synthesis and verification. However, until 
today the initial system specification is provided in natural lan­
guage which is manually translated into a formal implementation 
e.g. at the Electronic System Level (ESL) by means of SystemC 
in a time-consuming and error-prone process. 

In this paper, we envision a design flow which incorporates 
a Formal Specification Level (FSL) thereby bridging the gap 
between the informal textbook specification and the formal ESL 
implementation. Modeling languages such as UML or SysML 
are envisaged for this purpose. Recent accomplishments towards 
this envisioned design flow, namely the automatic derivation of 
formal models from natural language descriptions, verification 
of formal models in the absence of an implementation, and code 
generation techniques, are briefly reviewed. 

I. INTRODUCTION 

Being composed of up to several billion components, the 
design of embedded systems is one of the most complex 
problems people are facing today. While it was possible to 
fully design such systems gate by gate on the drawing table 
40 years ago, this procedure has become intractable due to 
the ever increasing complexity. As a consequence, elaborated 
design flows have been developed over the last decades in 
which several levels of abstraction are considered. 

Today, a design flow as briefly illustrated in Fig. l(a) is 
applied. The initial starting point is given by means of a 
specification which is usually provided in terms of a text book 
description, however, in order to perform even the simplest 
automatic synthesis techniques, a formal representation of the 
specification is required. For this purpose, an initial imple­
mentation is generated at the Electronic System Level (ESL) 
using high-level programming languages such as Systemc. 
This system level description enables the execution and simu­
lation of the desired design, but still hides details concerning 
a precise realization in both hardware and software. From 
this description, the system model is consecutively refined 
in successive steps leading to descriptions at the Register 
Transfer Level (RTL), the gate level, and the physical level. 
At the end of this process, the resulting chip is sent to a chip 
manufacturer. 

As embedded systems are often employed in safety critical 
systems such as avionic, automotive, and medical applications, 
ensuring the correctness is of high importance. For this pur­
pose, usually each transformation from one abstraction level 
to the next refinement is checked for equivalence. But due to 
the absence of a formal description at the specification level, 
automatic verification techniques are not applicable for the 
comparison with the system level. Further, as the system level 
representation is manually derived from the textual specifica­
tion, this step is particularly prone to errors and mistakes. 

So far property checking is applied to address this is­
sue by extracting properties from the specification in terms 
of temporal logic expressions which can subsequently be 
checked by using algorithms known model checkers [1]. 
Further techniques called coverage detection exist that can 
automatically determine whether enough properties have been 
written, i.e. whether the full behavior is considered by all 
properties [2]. However, the main obstacle remains, i.e. the 
specification is provided in natural language and a formal 
representation needs to be manually derived from it for further 
processing. Motivated by this, researchers started working on 
closing the gap between the informal textbook specifications 
and the respective ESL implementation [3], [4]. 

In this work, we envision a new design flow which exploits 
recent achievements in this area. For this purpose, we propose 
two major extensions. 

First, we follow the steady strive for higher levels of 
abstraction and enrich the specification itself by formal de­
scription means. Modeling languages such as the Unified 
Modeling Language (UML) [5] or the System Modeling Lan­
guage (SysML) [6] combined with constraints provided in 
the Object Constraint Language (OCL) [7] provide proper 
syntax and semantic for this purpose.' While these description 
means remain abstract enough for the specification level, their 
formal description enables (semi-)automatic verification and 
code construction. As a result, crucial design flaws can already 
be detected at the specification level and thus in the absence 
of a precise implementation. 

Second, initial solutions are applied to automatically derive 
the respective UMLlOCL descriptions from the natural lan­
guage specification. Recent achievements in the area of nat­
ural language processing [8], information extraction [9], and 
knowledge representation [10] are exploited for this purpose. 
In fact, already simple grammatical analyses enable e.g. the 
derivation of (1) basic components of a system (which can be 
derived from nouns in a sentence), (2) their functions (which 
can be derived from verbs in a sentence), and (3) attributes 
(which can be derived from adjectives in a sentence). 

Having such methods, we envision a design flow which 
includes a Formal Specification Level (FSL) as shown in 
Fig. 1 (b). This flow enables to (semi-)automatically derive for­
mal descriptions from a given specification provided in natural 
language. Formal methods are applied to this description to 
verify the correctness of the design prior to an implementation. 
If all checks passed, code skeletons for synthesis and formal 
properties for verification are extracted for further usage within 
the remaining stages of the established design flow. 

lIn the following, we focus on UML/OCL, while the general concepts are 
similarly applicable to other modeling languages as well. 
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Fig. 1. Conventional and envisioned design flow 

In the remainder of this paper, the general ideas and first 
accomplishments towards this envisioned design flow are pre­
sented. The following section briefly introduces the necessary 
background to keep the paper self-contained. Afterwards, 
Section III outlines the proposed extension to the overall 
design flow in detail. The respective steps for mapping a 
natural language specification to a formal model, checking the 
correctness of that formal model, and transforming the formal 
model into an implementation are then outlined in Section IV, 
Section V, and Section VI, respectively. Finally, remaining 
challenges to be addressed are discussed and the paper is 
concluded in Section VII. 

II. BACKGROUND 

In this work, the Unified Modeling Language (UML) is 
applied to represent the code skeletons and test cases which 
are semi-automatically derived from natural language. Besides 
that, we also exploit language processing tools. To keep the 
paper self-contained, the underlying concepts of UML and the 
applied tools are briefly reviewed in the following. 

A. Unified Modeling Language 

In this section, we briefly review the basic UML concepts 
which are considered in this work. A detailed overview of the 
UML is provided in [5]. 

1) Class Diagrams: A UML class diagram is used to 
represent the structure of a system. The main component of 
a class diagram is a class that describes an atomic entity of 
the model. A class itself consists of attributes and operations. 
Attributes describe the information which is stored in the class 
(e.g. member variables). Operations define possible actions 
that can be executed e.g. in order to modify the values of 
attributes. Classes can be set into relation via associations. 
The type of a relation is expressed by multiplicities that are 
added to each association-end. Class diagrams can be extended 
by constraints in the Object Constraint Language (OCL) such 
as invariants that further restrict the attribute values. 

Example 1: Fig. 2(a) shows a UML class diagram specify­
ing a simple telephone. The class diagram consists of the two 
classes Telephone and Receiver. The class Telephone has an 
attribute wireless of type Boolean. The receiver is related to the 
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(b) UML sequence diagram 

Fig. 2. UML class and sequence diagram 

telephone which is expressed by an association. As expressed 
by the multiplicities, each telephone has one receiver and vice 
versa. Both classes have an operation, i.e. the telephone can 
dial a number and the receiver can be activated. The single 
OCL invariant in the diagram states that if a telephone is 
wireless, its battery level needs to be defined. 

2) Sequence Diagrams: The dynamic flow caused by oper­
ation calls can be visualized by sequence diagrams. Sequence 
diagrams offer the possibility to represent particular scenarios 
(i.e. behavior) based on the model provided by the class 
diagram. Hence, several sequence diagrams exist for a given 
class diagram. In the sequence diagram, instances of the 
classes, i.e. objects, are extended by life lines that express 
the time of creation and destruction in the scenario. Arrows 
indicate operations that are called on an object, and are drawn 
from the caller to the callee. Besides objects also actors from 
the outside environment can be part of the sequence diagram. 
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Example 2: A sequence diagram is depicted in Fig. 2(b). 
In that scenario, first a number is dialed from an actor in 
the outside environment, before the telephone activates the 
receiver. 
In this work, class diagrams and sequence diagrams are applied 
to represent the semi-automatically determined code skeletons 
and test cases, respectively. 

B. Stanford Parser 

The Stanford Parser is an open source software compilation 
published by the Stanford Natural Language Processing (NLP) 
Group [8]. It parses sentences in different languages and re­
turns a Phrase Structure Tree (PST) representing the semantic 
structure of the sentence. A PST is an acyclic tree with one 
root vertex representing a given sentence. Non-terminal and 
terminal vertices (i.e. leafs) represent the grarmnatical structure 
and the atomic words of this sentence, respectively. A simple 
PST for the sentence "The small child sings a song" is given 
by means of Fig. 3(a). As can be seen all leafs are connected 
to distinct vertices that classify the tag of the respective word, 
e.g. nouns and verbs. These word tags are further grouped 
and connected by other vertices labeled with a tag classifying 
a part of the sentence, e.g. as noun parts or verb parts. The 
classifier tags are abbreviated in the PST, however, in Fig. 3(a) 
the full classifier is annotated to the vertices. For details on 
how a PST is extracted from a sentence, the reader is referred 
to [11]. 

Besides the PST, the Stanford Parser also provides typed 
dependencies [12] which are very helpful in NLP. Typed 
dependencies are tuples which describe the semantic corre­
lation between words in the sentence. Fig. 3(b) lists all typed 
dependencies for the sentence considered in Fig. 3(a). For 
example, the nouns are assigned their articles using the det 
relation. Note that the numbers after the word refer to the 
position in the text, which is necessary if a word occurs more 
than once in a sentence. Two further important relations are 
nsubj and dobj that allow for the extraction of the typical 
subject-verb-object form. In this case it connects the verb sings 
with both its subject and object. 

In this work, the Stanford Parser is applied to process the 
structure of the sentences describing a scenario. 
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Fig. 4. Overview of the Formal Specification Level 

C. WordNet 

WordNet [lO], developed at Princeton University, is a 
large lexical database of English that is designed for use 
under program control. It groups nouns, verbs, adjectives, and 
adverbs into sets of cognitive synonyms, each representing 
a lexicalized concept. Each word in the database can have 
several senses that describe different meanings of the word. 
In total, WordNet consists of more than 90,000 different word 
senses, and more than 166,000 pairs that connect different 
senses with a semantic meaning. 

Further, each sense is assigned a small description text 
which makes the precise meaning of the word in that context 
obvious. Frequency counts provide an indication of how often 
the word is used in common practice. The database does 
not only distinguish between the word forms noun, verb, 
adjective, and adverb, but further categorizes each word into 
sub-domains. Those categories are e.g. artifact, person, or 
quantity for a noun. 

In this work, WordNet is applied to determine the semantics 
of the sentences describing a scenario. 

III. THE FORMAL SPECIFICATION LEVEL 

Fig. 4 provides a more detailed view on the proposed 
extension for the envisioned design flow. The main goal 
is to (semi-)automatically derive an ESL-implementation in 
SystemC2 from a (textbook) specification provided in natural 
language. Given natural language test cases and requirements 
from the specification, an initial SystemC implementation, 
an executable testbench for simulation, and operation con­
tracts (pre- and post-conditions as motivated by Design-by­
Contract [13]) are (semi-)automatically generated. For this 
purpose, the Formal Specification Level as shown in Fig. l(b) 
and detailed in Fig. 4 is introduced as a new abstraction level 
which includes three stages. 

In the first stage (cf. Section IV), the test cases and the 
requirements are mapped from their natural language descrip­
tion into a formal representation by means of UMLIOCL. 
NLP techniques are exploited in order to extract the desired 
information. More precisely, the following steps are conducted 
in this first stage: 

• Determine the structure of the design 
Using e.g. a grammatical analysis, the basic components 
of the considered system are derived from the natural 
language specification. From the resulting information, 

2Note that SystemC is just a representative for any high-level object­
oriented hardware description language and can readily be replaced. 



a UML class diagram is created which provides a first 
formal description of the structure for the considered 
design. 

• Determine the behavior of the design 
In a similar fashion, execution sequences are derived from 
the natural language specification. They are used to create 
UML sequence diagrams representing certain scenarios 
and thus behavior to be considered in the design. 

• Determine the properties of the design 
After having both the structure and the scenarios, the 
requirements of the specification can be considered in 
detail. From them, formal properties which need to be 
satisfied by the design are derived and represented in 
terms of OCL expressions. 

As a result, the first stage leads to a formal description of the 
desired system in terms of UMLiOCL. 

In the second stage (cf. Section V), this formal descrip­
tion is used to conduct initial checks for correctness. This 
e.g. includes consistency checks such as checking whether it 
is possible to instantiate the desired system considering all 
constraints and requirements, but also first behavioral checks 
such as checking whether it is possible to reach a prohibited 
state. This allows for the detection of design flaws already 
in very early design steps, even in the absence of a precise 
implementation. 

In the third stage (cf. Section VI), after all checks have 
passed and no errors have been determined, a skeleton for 
the system level implementation as well as corresponding 
testbenches are derived. 

In the next sections, first accomplishments with respect to 
these stages of the FSL are illustrated. 

IV. MAPPING NATURAL LANGUAGE SPECIFICATIONS 
TO THE FORMAL SPECIFICATION LEVEL 

The first stage addresses the (semi-)automatic determina­
tion of a formal representation describing the structure, the 
behavior, and the properties of a system that is specified in 
natural language. First accomplishments for the former two 
aspects have been presented in [14] and are reviewed in the 
following two sub-sections. Afterwards, initial ideas on the 
property determination are presented. 

A. Determine the Structure of the Design 

Test cases inside a specification are written in a very 
specific way, i.e. by using short sentences which describe the 
elementary steps of a scenario. From this, much information 
can already been determined automatically. As an example, 
consider the following test case describing how a user is 
placing a telephone call: 

A caller picks up the receiver from a telephone. 
The caller dials the number 6-345-789. 
The telephone places a call. 

Fig. 5 illustrates that already from these three sentences a 
significant amount of structural information can be extracted: 
Since [telephone) and (receiver] are object nouns, it can be con­
cluded that they represent components of the considered 
system (to be represented by classes). Preceded adjectives 
(such as (wireless]) substantiate objects and, thus, shall be added 
as attributes to the corresponding class. Verbs correlate to 
operations which can be invoked by components or actors. 

Fig. 5. Determine the structure of the design 

Moreover, prepositions help to determine relations between 
classes. For example, [the receiver from a telephone) does not only 
imply a relation due to the preposition (from] but also indicates 
that a telephone can only have one receiver due to the definite 
article �. 

Recent progress in the development of NLP technolo­
gies enables to extract much of these information in 
a (semi-)automatic manner. More precisely, NLP parsers 
(e.g. the one presented in [11]) are able to decompose a 
sentence in terms of a phrase structure tree (PST) which 
assigns each atomic word to a syntactic word type (such as 
noun, verb, or adjective) and also groups words into larger 
sub-parts of the sentence (cf. Section II-B). 

However, sometimes the syntactical and grammatical infor­
mation alone is not sufficient. For example in the first sentence 
from Fig. 5, three nouns are identified in the PST, i.e. (caller], 
(receiver], and [telephone) but only for the two latter ones classes 
need to be created. This information cannot be derived from 
the PST. Hence, we are additionally making use of an ontology 
that allows for a further semantical classification of the words. 
A look into a word database such as WordNet [10] reveals that 
the first noun is of class person whereas the other nouns are 
listed as artifacts. Hence, the caller is treated as an actor of 
the system. 

Overall, exploiting these NLP technologies, a UML class 
diagram formally representing the structure of the consid­
ered system can automatically be determined in many cases. 
However, since the textual description always can contain 
ambiguities, manual interactions with the design engineer 
cannot entirely be excluded leading to a (semi-)automatic and 
assisted approach as evaluated in [14]. 

B. Determine the Behavior of the Design 

Besides the structure, test cases of a specification also 
provide information on certain scenarios, i.e. a sequence of 
actions to be conducted by the considered design. Formally, 
such scenarios can be represented by sequence diagrams as 
introduced in Section II-A2 which represent certain behavior 
of the design. The mapping from the natural description of a 
test case to a sequence diagram can be performed in a similar 
way as done above for determining the structure. 

More precisely, each verb in a sentence can be mapped to a 
corresponding operation call. The caller and a possible callee 
can be determined by the subject and the object, respectively. 
Structural information of the system derived beforehand are 
exploited for this purpose. Fig. 6 illustrates how a sequence 
diagram is built from the exemplary test case. 

However, also here some obstacles need to be addressed. For 
example, instead of parameters for a function (such as (number] 
in Fig. 5), now the actual value for an operation call needs to 
be fetched (such as (6-345-789] in Fig. 6). Furthermore, objects 
and actors that reoccur in successive sentences need to be 



Fig. 6. Determine the behavior of the design 

determined as such and linked to their original occurrence. As 
an example, [The callerl in the second sentence refers to [A callerl 
from the first sentence, i.e. they refer to the same actor in the 
sequence diagram. 

For this purpose, again the PST is analyzed. As an example, 
due to the definite article � in the third sentence, it becomes 
clear that the same telephone as in the first sentence is 
addressed. If instead an indefinite article had been used as 
the determiner for (telephone), a new object would have been 
instantiated for the sequence diagram. 

C. Determine the Properties of the Design 

The scenarios derived in the last step describe sequences of 
actions with precise simulation parameters. This helps testing 
the basic functionality of the desired system, but is insufficient 
to actually proof its correctness. For example, while the 
basic functionality of a traffic light controller can easily be 
validated by some test case scenarios, general (safety-critical) 
requirements such as "the pedestrian light and the car light 
are never supposed to be both green at the same time" require 
a more exhaustive approach. For such purposes, properties 
are usually defined which afterwards are checked by model 
checkers.3 

So far, such properties are mainly manually derived from the 
textual specification. However, also here a systematic approach 
can be applied [15]. For example, taking the "never green at 
the same time"-requirement from above, the elementary sub­
terms of the expression can be detected and linked to their 
respective model elements leading to: 

Sub-sentence 
'pedestnan light' 
'car light' 
'show green' 

Model element 
control ler. pedLight 
controller.carLight 
x == true 

With the aid of the adverbs in the requirement, these code 
parts can be joined together to form an invariant such as 

inv: not (controller.pedLight and controller.carLight). 

Besides that, it is also possible to generalize properties from 
test cases when they obey a certain structure. For example, 
in the context of Behavior Driven Development (BDD) the 
structure of a test case is often given by a Given A, When B, 
Then C template [16]. Since A corresponds to environment 
constraints, B corresponds to the antecedent, and C corre­
sponds to the consequent of a property, formal properties can 
be generalized from such test cases [17]. 

3Note that, in the following we are using the terms properties and invariants 
almost synonymously as "properties" are more common in the context of 
formal verification whereas "invariants" is a common term used in the context 
of modeling. 

V. CHECKING CORRECTNESS 
AT THE FORMAL SPECIFICATION LEVEL 

After the first stage, a formal representation has been 
derived which is sufficient to provide information about the 
structure, the behavior, and the properties of the desired system 
while still hiding precise implementation details. In the second 
stage, this representation enables to conduct correctness checks 
of the design in the absence of an implementation. For this 
purpose, approaches presented in [18], [19], [20], [21] for 
static verification, presented in [22] for invariant elimination, 
and presented in [23], [24] for dynamic verification can be 
applied. In [25], also first debugging approaches have been 
introduced. 

A. Verification of Static Aspects 

Having a formal representation of the design does not nec­
essarily imply that a working implementation can be generated 
from it. In fact, the formal model may inherit constraints which 
contradict each other. As a result, no valid instantiation would 
be possible and any implementation would be erroneous from 
scratch. The FSL enables to detect such errors before any code 
is written. 

Approaches introduced e.g. in [18], [19], [20], [21] can 
be utilized for this purpose. They take the obtained UML 
diagram (representing the structure) together with the prop­
erties (which are encoded as OCL invariants) and automati­
cally perform the above described consistency checks. Besides 
enumerative methods [20], also elaborated formal approaches 
have been proposed in the recent past [21]. Considering the 
abstract description of the models (usually, no complex data­
structures are applied), particularly the latter approaches are 
applicable to quite significantly complex designs. 

B. Invariant Removal 

At the FSL, invariants are a proper description mean to 
represent properties the design has to satisfy. However, when 
it comes to verification they may cause unnecessary overhead. 
Since invariants are assumed globally, i.e. for each possible 
system state of the system, they have to be considered all the 
time. Even if only a certain functionality of a design is under 
verification, invariants of the entire model have to be assumed 
additionally. 

An alternative to prevent this overhead has been proposed 
in [22]. Here, invariants are iteratively removed and replaced 
instead with a smaller set of pre- and post-conditions for cer­
tain operations. This enables to entirely eliminate all invariants 
without changing the semantics of the model. Since addi­
tionally, pre- and post-conditions only have to be considered 
locally when the corresponding function is called, this reduces 
the overhead. 

Furthermore, invariant elimination enables a design flow 
in which the implementation of different operations can be 
conducted by different developers. Then, the respective sub­
teams do not have to globally consider all the invariants 
anymore, but just the local pre- and post-conditions of the 
corresponding operation. 

C. Verification of Dynamic Aspects 

Finally, also the dynamic behavior can be verified at the 
FSL. This is possible due to the above-mentioned pre- and 
post-conditions of operations which enable a descriptive rep­
resentation of the behavior, without giving a precise implemen­
tation. A pre-condition describes in which states an operation 



can be called, while the post-condition describes the effect an 
operation has on that system state. These conditions may be 
specified directly from the designer or are determined by the 
invariant elimination step described above. 

Any model where its operations are enriched with pre- and 
post-conditions can be transformed into an instance similar to 
Bounded Model Checking (BMC) [26] and, therefore, allows 
for addressing certain dynamic verification tasks. In fact, 
similar to verification at the implementation level, operation 
sequences can be determined that lead e.g. to bad states, 
good states, live locks, or dead locks [23]. Utilizing these 
techniques, again, errors can be detected before any code is 
written. 

VI. MAPPING FROM FORMAL SPECIFICATION LEVEL 
TO THE ELECTRONIC SYS TEM LEVEL 

Finally, the formally modeled and verified design shall be 
implemented in a proper ESL-Ianguage so that it can be further 
refined using the established design flow. Also in this final 
stage of the FSL the formal representation can be exploited. 

In fact, the corresponding UMLlOCL descriptions allow for 
a generation of code parts for the implementation process. This 
includes 
� code stubs generated from class diagrams (Section IV-A), 
� an executable testbench generated from the sequence dia-

grams (Section IV-B), 
� generalized properties from the parameterized test 

cases (Section IV-C), 
� a consistent property set (Section V-A), 
� and contracts for the operations of a class (Section V-B). 
Further, the verification of dynamic aspects plays a significant 
role in the transition from the FSL to the ESL. As briefly dis­
cussed in Section V-C, all dynamic aspects, i.e. the interaction 
of the components, can be checked in the absence of a precise 
implementation. As an example, it can be ensured that the 
model is deadlock-free or that all operations can be reached 
from given initial states. Hence, after the implementation 
phase, it is sufficient to check whether the implementation of 
each single operation adheres correctly to its contracts. That is, 
assuming the pre-condition and executing the code must imply 
the post-conditions. Since the verification of the operations can 
be performed locally without considering the whole system, 
verification effort can be decreased. 

VII. CONCLUSION 

In this paper, we envisioned a new design flow which 
includes an FSL representing the desired design using mod­
eling languages such as UML or SysML combined with 
constraints provided in languages such as OCL. The proposed 
flow bridges the gap between the natural language textbook 
specification and the formal ESL implementation. We illus­
trated that first accomplishments towards the envisioned design 
flow have already been made: NLP techniques are available to 
derive formal descriptions of natural language specifications, 
verification approaches based on modeling languages allow 
to detect design errors prior to a precise implementation, and 
code generation techniques can be applied to generate code 
stubs, executable testbenches, etc. 
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