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Abstract—In model-based design, it is common and helpful to
use invariants in order to highlight restrictions or to formulate
characteristics of a design. In contrast to pre- and post-conditions,
they represent global constraints. That is, they are harder to
explicitly consider and, thus, become disadvantageous when
the design process approaches the implementation phase. As a
consequence, they should be removed from a design when it
comes to an implementation. However, so far only naïve tool
support aiding the designer in this task is available.

In this paper, we present an approach which addresses this
problem. A methodology is proposed which iteratively removes
invariants from a model and, afterwards, presents the designer
with invalid scenarios originally prevented by the just eliminated
invariant. Using this, the designer can either manually modify
the model or simply take the automatically generated suggestion.
This enables to entirely eliminate all invariants without changing
the semantics of the model. Case studies illustrate the applica-
bility of the proposed approach.

I. INTRODUCTION

Modeling languages, such as the Unified Modeling Lan-
guage (UML) [1] being their most famous representative,
received much attention in the past. While they are already
applied for years in the early phases of complex software
projects, also designers of hardware systems, embedded sys-
tems, or hardware/software systems begin to use them in
order to keep the increasing complexity of today’s designs
under control [2]. Recently introduced derivatives such as the
Systems Modeling Language (SysML) [3] underline this trend.

Depending on the considered application as well as on the
feature to be specified, these modeling approaches provide
several language means on different levels of abstraction
(e.g. in terms of diagram types). Additionally, properties
and characteristics of the design can further be refined by
textual constraints, e.g. given in the Object Constraint Lan-
guage (OCL) [4]. This includes invariants, i.e. global con-
straints that must be satisfied by all system states, and pre-
and post-conditions, i.e. local constraints that must be satisfied
before and after the execution of an operation, respectively.
All this enables the designer to precisely outline the desired
structure and behavior of a system in the early stages of a
design process.

In the modeling process, invariants are a very helpful
concept to express global constraints that need to be satisfied
in the system under design. For example, they can be applied
to exclude “bad” system states, to express restrictions, or
to explicitly highlight characteristics of the design. However,
when the design process approaches the implementation phase,
invariants are disadvantageous. Typical arguments which do
not support the use of invariants during and after the imple-
mentation are:

• Programming engineers usually prefer pre- and post-
conditions as they explicitly describe the nature of the op-
eration to be implemented. Programming languages such
as Eiffel [5], D, Spec#, .NET Framework, or Java [6] even
have syntactical support for pre- and post-conditions.

• Certain invariants often affect only some few and very
specific operations. But since invariants represent global
constraints, it is often not clear which ones. Consequently,

all invariants need to be considered during the implemen-
tation of every operation.

• While pre-conditions (post-conditions) have to be
checked only before (after) the execution of an operation,
invariants need to be valid at every point in time. This
impedes their validation in the implemented system.

• During the execution of safety critical systems, one might
want to explicitly avoid entering an invalid or “danger-
ous” state. Invariants can only confirm that the current
system state is already invalid. In contrast, a violated pre-
condition can prevent an operation which would lead to
an invalid state from being called.

• If the correctness of an implementation should be ver-
ified (e.g. by property checking methods [7]), always
all invariants have to be considered. But since certain
invariants often cover only very specific system states,
this leads to an unnecessarily large number of constraints
to be checked.

As a consequence, invariants should be removed from a design
when it comes to an implementation. However, getting rid of
invariants is a crucial task which requires a comprehensive de-
sign understanding and always bears the risks of inadvertently
introducing unwanted or even illegal behavior to the system.
Thus, design methods are needed which eliminate invariants
without changing the nature and the properties of the original
specification.

In this paper, we present an approach which aids designers
in this task. More precisely, we propose a methodology which
iteratively removes all invariants from a given specification. In
each iteration, our approach pin-points the designer to invalid
scenarios which originally would be prevented by the just
eliminated invariant. For this purpose, the designer is guided
by given options to substitute the invariant e.g. by adding a
new or modifying an existing pre- or post-condition. Moreover,
even automatic suggestions for such substitutions are presented
and can be incorporated.

By means of a case study the applicability of this method-
ology is demonstrated. Applying our approach enables to
substitute invariants by alternative constraints. Furthermore,
our approach ensures that after removing the invariant from
the model, the additional constraints prevent the system from
reaching invalid states. While we describe and evaluate the
proposed approach by means of UML/OCL class diagrams,
the general concept can similarly be adapted to other modeling
languages. To the best of the knowledge, this is the first
nontrivial approach aiding the designer in this task.

II. BACKGROUND

A. Class Diagrams
A UML class diagram is used to represent the structure of

a system. The main component of a class diagram is a class
that describes an atomic entity of the model. A class itself
consists of attributes and operations, where attributes describe
the information which is stored by the class and operations
define possible actions that can be executed in order to change
attributes. Classes can be set into relation via associations. The
type of a relation is expressed by multiplicities that are added
to each association-end.978-3-9810801-8-6/DATE12/ c©2012 EDAA



Arbiter
address: Integer

select(c: Client)

Client
address: Integer

connect(a: Arbiter)

HasClients0..1
arbiter

1..10
clients

ActiveClient0..1 1
active

inv: clients.include(active)

context Arbiter::select(c: Client)
pre: clients.include(c)
post: active = c

context Client::connect(a: Arbiter)
pre: arbiter.isUndefined()
post: arbiter = a

(a) A class diagram

arbiter: Arbiter

address = 0xED31

client2: Client

address = 0x1A35

client1: Client

address = 0xAF98

HasClient

ActiveClient HasClient

(b) An object diagram

Fig. 1. UML class diagram, object diagram, and sequence diagram

Example 1: Fig. 1(a) shows a UML model specifying an
arbiter. The class diagram consists of the two classes Arbiter
and Client. Both classes have an attribute address of type In-
teger. An arbiter is connected to a client by two associations
expressing two different roles of relationship. First, an arbiter
has clients that are connected to it. This is expressed by
the association HasClients. As expressed by the multiplicities,
each arbiter must be connected to at least one and to at most
ten clients, whereas a client can only be connected to at most
one arbiter. Second, an arbiter has one special client that is
active, expressed by the association ActiveClient. Both classes
have an operation, i.e. the arbiter can select a client to be
active, and the client can connect itself to an arbiter.

B. OCL Expressions
In general, UML class diagrams are not very restrictive. In

fact, dependencies and properties of a class diagram can be
specified by means of multiplicities at the associations only.
In order to express further properties or restrictions, textual
constraints provided by OCL can be added to a model. OCL
expressions may appear as both, invariants or as pre- and post-
conditions of operations. Invariants are global constraints that
must be satisfied by all system states. Pre- and post-conditions
are considered only locally in the context of an operation
call. More precisely, an operation can only be invoked if
its corresponding pre-condition is satisfied. Afterwards, the
following system state needs to match the operation’s post-
condition.

Example 1 (cont’d.): The class Arbiter in Fig. 1(a) is ex-
tended by an OCL invariant inv which states that active
clients must be in the set of connected clients. Furthermore,
the functionality of the operation select is further specified.
According to its pre-condition, select can only be invoked
if and only if the client c to be selected is connected to
the arbiter. The post-condition states that, after the execution
of the operation, c has to be the active client. Similarly,
the operation connect can only be called by a client, if no
connection to the arbiter already exists, i.e. only if connect is
undefined. After the execution of the operation, the client has
to be connected to the arbiter a.

C. Object Diagrams
Object diagrams represent a precise instantiation of a class

diagram. They are also called system states or snapshots.
Therefore, one class diagram can provide the basis for several
object diagrams. In the object diagram, classes from the model
are instantiated as objects whose attributes are assigned precise
values and associations are instantiated as precise links which
connect objects.

An object diagram is called valid if all restrictions from
the class diagram are met, i.e. both the multiplicities at the
associations and the invariants are satisfied. Operations and,
therefore, pre- and post-conditions have no effect in object
diagrams since only one single state in time is described by
them.

TrafficLight

request: Boolean
pedLight: Boolean
carLight: Boolean

switchPedLight()
switchCarLight()

Button

requesting()

1 tl
1 button

context TrafficLight::switchCarLight()
post: carLight <> carLight@pre

context TrafficLight::switchPedLight()
pre: request = true
post: pedLight <> pedLight@pre
post: request = false

context Button::requesting()
pre: light.pedLight = false
post: light.request = true

inv oneRed: not(carLight and pedLight)

(a) Model

tl1: TrafficLight

request: False
pedLight: False
carLight: True

button: Button

(b) Initial State

Fig. 2. Simple Traffic Light Preemption

Example 2: A valid object diagram which is instantiated
from the class diagram in Fig. 1(a) is outlined in Fig. 1(b). Two
clients client1 and client2 are connected to one object arbiter.
The attributes can assume 16-bit values.

III. ELIMINATING INVARIANTS IN UML/OCL MODELS

A. Problem Formulation
As discussed in Section I, design methods are needed

which eliminate invariants without changing the nature and
the properties of the original specification. To the best of our
knowledge, so far only naïve methods address this problem,
i.e.

• all invariants are just removed from the design without
any further consideration or

• each invariant is added as a post-condition to each oper-
ation call.

However, while simply removing all invariants would actually
change the semantics of the model and, thus, prevents the
implementation from detecting invalid system states, also the
second approach is disadvantageous. Here, the post-conditions
would become significantly more complex which makes the
implementation much harder and inefficient. Furthermore,
many invariants are not even affected by each operation.

Motivated by this, the following problem is addressed in
this paper:

How can invariants efficiently be eliminated
from a given model without changing its semantics?

In the remainder of the paper, we introduce a methodology
for this problem. For this purpose, an approach is proposed
which iteratively considers invariants and creates corner case
scenarios based on them. Using this, the designer is presented
with options to substitute a considered invariant by adding
a new or modifying an existing pre-condition. Alternatively,
these substitutions can also be performed automatically.

B. General Idea
The general idea proposed in this paper for eliminating

invariants is illustrated by means of the class diagram de-
picted in Fig. 2(a). Here, a simple traffic light preemption
is specified. If the attribute carLight (pedLight) is assigned to



tl1
request: False
pedLight: False
carLight: True

tl1
request: True
pedLight: False
carLight: True

tl1
request: False
pedLight: True
carLight: True

�
requesting switchPedLight

(a) First witness with a depth of 2

tl1
request: False
pedLight: False
carLight: True

tl1
request: False
pedLight: False
carLight: False

tl1
request: True
pedLight: False
carLight: False

tl1
request: False
pedLight: True
carLight: False

tl1
request: False
pedLight: True
carLight: True

�
switchCarLight requesting switchPedLight switchCarLight

(b) Second witness with a depth of 4

Fig. 3. Witnesses for violation of oneRed (For the sake of a better readability, the button objects are omitted from the system states.)

True, cars (pedestrians) are allowed to go. Otherwise, they are
supposed to wait. By the invariant in the class diagram (de-
noted by oneRed), it should be ensured that the traffic lights
for both, cars and pedestrians, are never “green” at the same
time. Finally, cars are allowed to pass as long as no pedestrian
requests to cross the street, i.e. no pedestrian invokes the
requesting operation. This is specified in the respective pre-
and post-conditions of the operations. The initial state which
is assumed for this example is depicted in Fig. 2(b).

The task is to eliminate the invariant oneRed. For this
purpose, we propose the following scheme: First, the in-
variant oneRed is simply removed from the model. Then,
existing methods for automatic model exploration (e.g. [8],
[9]) are applied to obtain a sequence of operation calls
which actually leads to a system state violating oneRed. The
resulting sequence diagrams serve as witnesses pin-pointing
the designer to invalid scenarios which are no longer excluded
by the invariant. By means of these witnesses, the model can
be adjusted.

For example, assume that a sequence as given in Fig. 3(a)
is obtained. It witnesses a scenario which originally would be
prevented by the invariant. By inspecting this scenario, it can
be concluded that switching the pedLight to “green” while the
carLight still is “green” should not be allowed. This can be
expressed by adding the pre-condition
not( not pedLight and carLight )

to the operation switchPedLight().
Afterwards, this process is repeated in order to check if

further scenarios, originally excluded by oneRed, are possible.
This would lead to another witness as e.g. shown in Fig. 3(b).
From that, the designer learns that the carLight should not be
switched to “green” while the pedLight is still “green”. This
illegal behavior can be prevented by adding the pre-condition
not( pedLight and not carLight )

to the operation switchCarLight().
After this iteration, no further scenarios leading to a vio-

lation of oneRed can be generated. That is, the model has
been adjusted in such a way that oneRed can be removed
without affecting the semantics of the specification. Using
this scheme, a structural methodology is available which pin-
points the designer to scenarios prevented by an invariant to
be removed. Based on that, corresponding changes can be
conducted on the model. Moreover, adjustments can even be
performed automatically. As a result, a model is obtained that
does not rely on invariants any longer.

IV. PROPOSED METHODOLOGY

In this section, we describe the proposed methodology in
detail. For this purpose, basic notations to formally express
the concepts from Section II are provided first.

In the following, I describes the set of invariants in a model.
Further, σ denotes a system state. For an invariant i ∈ I, σ(i)
is true if and only if the invariant i is satisfied by the system
state σ. Operation calls are denoted by ω1, . . . , ωj in the order
they are invoked. They lead from an initial system state σ0
to a sequence of following system states σ1, . . . , σj−1, σj .
Note that operations are not called by classes, but their
corresponding objects in the system state.

Given that, the proposed procedure can be formulated as
follows:

Algorithm E (Invariant Elimination). This algorithm elim-
inates an invariant i ∈ I from a given UML/OCL model
without changing the semantics of it.
E1. [Initialization.] Set I ← I \{i}, i.e. remove an invariant i

to be eliminated from the set of invariants.
E2. [Violate invariant.] Try to determine a scenario leading to

a system state σj with σj(¬i) = 1, i.e. to a system state
which violates the currently considered invariant i.

E3. [Continue or terminate?] If such a σj cannot be deter-
mined, the invariant is already covered by other con-
straints. Thus, either continue with the next invariant in
Step E1 or, if no further invariants are left, terminate.

E4. [Add pre-condition.] Inspect the determined scenario and
add pre-conditions that avoid entering σj again. After-
wards, continue with Step E2.

In this methodology, Step E2 and Step E4 are crucial.
In Step E2, a system state has to be determined such that

the invariant is violated. Therefore, we propose the usage of
approaches for automatic model exploration. Enumerative or
simulative approaches are often not suitable for this purpose
since they soon reach their limits and can only consider very
short sequences of operation calls. Interactive approaches such
as introduced in [8] require further manual interaction by
the designer and cannot always ensure completeness. Recent
advancements in the dynamic verification of UML/OCL mod-
els [9] made the proposed methodology practically feasible.
Here, formal methods are exploited which enable to efficiently
determine sequence diagrams and system states of large se-
quences of operation calls while still considering the whole
search space.

Step E4 is crucial since here the actual substitution of the
invariant is performed. The system state σj−1 as well as the
operation call ωj are particularly important. The operation
call ωj causes to reach the state σj which originally was
prevented by the currently considered invariant i. Thus, in
order to remain the semantics of the model, it has to be ensured
that ωj is not called in state σj−1. This can easily be done
by adding a new pre-condition. Depending on the individual
case, this step can be done automatically or interactive.

Automatic Approach. A formal and, therefore, automatable
way to avoid that an operation is not called in a state σj−1
is to add an inversion of σj−1 to the pre-condition of the
operation corresponding to ωj . More precisely, all assignments
to attributes, links, and operation parameters of σj−1 are taken,
conjugated, and finally inverted. Then, the pre-condition is
the resulting expression. Since this often leads to very sim-
ilar expressions, the pre-conditions can usually be optimized
afterwards (e.g. by merging identical terms).
Interactive Approach. The interactive approach works al-
most the same as the automatic approach but additionally
exploits the expertise as well as the design understanding of
the user. Here, the scenarios as well as the resulting pre-
conditions are just considered as a suggestion which (1) pin-
points the designer to invalid scenarios originally prevented by



the invariant and (2) provides the designer with options. While
in some cases these suggestion can simply be taken over, quite
often the designer is able to derive much better constraints out
of that.

Example 3: Consider again the class diagram given in
Fig. 2(a). The pre-conditions suggested by the automatic ap-
proach would be similar to the ones deduced in Section III-B.
However, they would further incorporate the value of the re-
quest attribute. With a better understanding of the design,
one can derive that this attribute is not relevant in order
to prevent invalid system states and remove that particular
assignment from the suggested expressions. This leads to the
pre-conditions given in Section III-B.

V. CASE STUDY

The proposed methodology has been implemented in C++.
In order to evaluate the approach, a UML model specifying
the abstract functionality of a CPU, i.e. the communication be-
tween its different modules such as memory, program counter,
and ALU, has been applied. The model was composed of
6 classes, 5 operations, 8 invariants, 41 pre-/post-conditions,
and 9 instantiated objects.

For Step E2 of the proposed methodology, i.e. for deter-
mining a scenario leading to a system state which violates
a currently considered invariant i, the dynamic verification
approach introduced in [9] has been utilized. Therefore, the
number j of operation calls have to be provided, to which we
will refer to as depth in the following. Note that, if no scenario
can be determined in Step E2, the depth has to be increased
up to a reasonably large number where no further violations
are expected. Only this ensures that a currently considered
invariant is completely substituted by other constraints.

The results of the respective iterations performed by the
proposed methodology are summarized in Table I. The model
consists of eight invariants, which are to be removed. For the
first invariant, a witness with only one operation call (i.e. with
depth=1) has been determined first. From that, a pre-condition
has been interactively added to the model, i.e. the pre-
condition that was suggested by the approach has been mod-
ified (denoted by Fix=+1 Pre and Type=Interactive). After-
wards, no further witness could be determined considering one
operation call only. Thus, the depth has been increased in order
to check for further scenarios. This time, the automatically
suggested pre-condition was suitable to be added without
modification to the model. Since no further witnesses were
found after 2 and after 100 operation calls (the previously
defined upper bound), the invariant was classified to be entirely
covered by the added constraints and, thus, removed from the
model. In a similar way, the remaining invariants have been
eliminated. Note that the second invariant has been substituted
by a post-condition instead of a pre-condition. This was an
individual decision based on the design knowledge of the user.
Furthermore, the last two invariants already have been covered
by the previously made modifications of the model.

The time needed to eliminate the invariants from the model
indicates the efficiency of the methodology. Due to the help
of the generated scenarios and the suggested options, the
manual modifications of all considered case studies have been
performed within a few minutes. The run-time of the approach
itself was negligible (i.e. just a few seconds) in most of the
cases. Only if larger depths are considered, the run-time might
become crucial. The development of more advanced methods
to address this is left for future work.

Overall, we can conclude that the proposed methodology
is very helpful in the process of invariant elimination. Instead
of considering all invariants of a given model in each single
operation, we are able to entirely remove them from the

TABLE I
CASE STUDY RESULTS

Inv. Depth Fix Type Time Inv. Depth Fix Type Time
I1 1 +1 Pre Inter. 0.00 I5 1 +1 Pre Inter. 0.00

1 — 0.00 1 +1 Pre Inter. 0.00
2 +1 Pre Auto. 0.00 1 +1 Inter. 0.00
2 — 0.00 1 — 0.00

100 — 11.80 100 — 4.59
I2 1 +1 Post Inter. 0.00 I6 1 +1 Post Inter. 0.00

1 — 0.00 1 — 0.00
2 +1 Post Inter. 0.01 100 — 0.43
2 — 0.00

100 — 19.60
I3 1 +1 Pre Inter. 0.00 I7 1 — 0.00

1 +1 Pre Inter. 0.00 100 — 0.43
1 +1 Pre Inter. 0.00
1 — 0.00

100 — 4.61
I4 1 +1 Pre Inter. 0.00 I8 1 — 0.00

1 +1 Pre Inter. 0.00 100 — 0.47
1 +1 Pre Inter. 0.00
1 — 0.01

100 — 4.65

model, while at the same time a significantly lower number of
special and local constraints is added. While a naïve method,
i.e. adding each invariant as a post-condition to each operation,
would lead to 8 · 5 = 40 local constraints in case of the CPU
benchmark, our approach generates just 14.

Finally, this approach further helps in model understanding
as designers are directly pin-pointed to scenarios which are
prevented by invariants.

VI. CONCLUSIONS

We presented an approach that assists designers in the
elimination of invariants from a model. While invariants are
a helpful concept during the modeling phase, they become
cumbersome in the implementation phase. Our approach iter-
atively removes invariants from the model by substituting them
with alternative local constraints, such as pre-conditions. The
semantics of the model is thereby preserved. Depending on the
situation, the designer can apply the suggested pre-conditions
of the approach automatically or modify them in an interactive
step.

In case studies we illustrated that our approach is able to
reduce the number of additional constraints in comparison
to naïve methods. Furthermore, the necessary exploration of
the system states can be done in a reasonable run-time. In
future work, we plan to improve the performance of the
automatic approach, particularly in scenarios requiring larger
depths. Furthermore, the quality of the automatically generated
modifications is subject for further consideration.
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