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Abstract. In recent years, research in the domain of reversible circuit
design has attracted significant attention leading to many different ap-
proaches e.g. for synthesis, optimization, simulation, verification, and
test. The open source toolkit RevKit is an attempt to make these de-
velopments publicly available to other researchers. For this purpose, a
modular and extendable framework has been provided which easily en-
ables the addition of new methods and tools.

In this paper, we introduce the functionality as well as the internals
of RevKit. We provide examples and use cases showing how to apply
RevKit and its components in order to create and execute customized
design flows. Furthermore, we demonstrate how the architecture and the
design concepts of RevKit can be exploited to easily develop new or
improved methods for reversible circuit design.

1 Introduction

The development of computing machines has found great success in the last
decades. Nowadays billions of components are built on a few square centimeters
– and this increasing trend continues. The number of transistors in an integrated
circuit doubles every 18 months – also known as Moore’s Law. However, it is
obvious that such an exponential growth must reach its limits in the future.
Otherwise, the miniaturization would reach a level where transistors consist of
only single atoms. Furthermore, power dissipation more and more becomes a
crucial issue for designing high performance digital circuits.

To further satisfy the need for more computational power, alternatives are
required that go beyond the scope of the conventional (CMOS) technologies.
Reversible logic marks a promising new direction where all operations are per-
formed in an invertible manner. That is, in contrast to conventional logic, only
bijective operations are allowed implying a reversible computation, i.e. the inputs
can be obtained from the outputs and vice versa. This reversibility builds the
basis for emerging technologies that may replace, or at least enhance, conven-
tional computer chips, e.g. in the domain of low-power design [1,2,3], quantum
computation [4,5,6], optical computing [7], DNA computing [8], as well as nan-
otechnologies [9].
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Fig. 1. Reversible gates

The basic concepts of reversible logic are not new and were already introduced
in the 60’s by Landauer [1] and further refined by Bennett [2] and Toffoli [10].
They observed that due to the reversibility fanouts and feedback are not directly
allowed in reversible circuits. As a consequence new libraries of (reversible) gates
have been introduced including e.g. Toffoli gates [10], Fredkin gates [11], and
Peres gates [12]. Figure 1 shows these gates in a cascade. Each gate consists of
control lines (denoted by ) and target lines (denoted by except for the Fredkin
gate where an is used instead). For a Toffoli gate, the value of the target line
becomes inverted, if all control lines are assigned to the logic value 1 while for
the Fredkin gate the target lines are interchanged in this case. The Peres gate is
a cascade of two Toffoli gates. The annotated values in Fig. 1 demonstrate the
computation of the respective gates. As can be seen, the calculation can be done
in both directions, i.e. it is reversible.

Even if this represents the basis for research in the area of reversible cir-
cuits, the topic was not intensively studied by computer scientists before the
year 2000. The main reason for that may be due to the fact that applications of
such circuits have been seen as “dreams of the future”. However, this changed
with recently made achievements. For example, in the domain of low-power de-
sign, first reversible circuits have been built which are powered by their input
signals only and do not need additional power supplies (see e.g. [3]). In quan-
tum computation, factorization has been solved in polynomial time whereas only
exponential solving methods are known for conventional circuits (see e.g. [4,6]).
These achievements (together with others) significantly moved the topic forward
so that nowadays reversible logic is seen as a promising research area. As a con-
sequence, in the last years computer scientists started to develop new methods
for the design of reversible circuits. Among others, these include approaches for
synthesis (see e.g. [13,14,15]), optimization (see e.g. [14]), simulation (e.g. [16]),
verification (e.g. [17,18,19]), and test (e.g. [20,21]).

However, most of the resulting methods are not publicly available1. This
often makes the development of new methods harder since e.g. previous ap-
proaches are not available for comparison. Furthermore, approaches have to be
re-implemented from scratch in order to modify or improve them. The lack of
tools for reversible hardware design makes it hard for beginners to get involved
in the topic.

1 Exceptions are e.g. the RMRLS synthesis approach [22] which is available at
http://www.princeton.edu/~cad/projects.html or the quantum simulator
QuIDDPro [16] which is available at
http://vlsicad.eecs.umich.edu/Quantum/qp/

http://www.princeton.edu/~cad/projects.html
http://vlsicad.eecs.umich.edu/Quantum/qp/
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The open source toolkit RevKit is an attempt to make these developments
publicly available to other researchers. For this purpose, a modular and ex-
tendable framework has been provided which easily enables the addition of new
methods and tools. Besides basic functionality (like parser and export func-
tions), RevKit already provides elaborated methods for synthesis, optimization,
and verification. In this sense, RevKit addresses users who simply want to apply
the framework and its tools as well as developers who actively want to develop
further methods on top of the framework. For this purpose, RevKit is available
online at http://www.revkit.org.

In this paper, we introduce the functionality as well as the internals of RevKit.
We provide examples and use cases showing how to apply RevKit and its com-
ponents in order to create and execute customized design flows. The paper is
structured as follows. First, RevKit and the main approaches are briefly reviewed
in the next section. Section 3 illustrates the application of RevKit by means of
the Python interface and by means of a graphical user interface. Afterwards, the
the architecture as well as the design concepts of RevKit are introduced in Sect. 4
enabling to easily extend or improve the framework with further functionality.
Section 5 concludes the paper.

2 The RevKit Framework

RevKit is an open source toolkit available at www.revkit.org which aims to make
recent developments in the domain of reversible circuit design accessible to other
researchers. It provides core functionality like read-in routines for functions and
reversible circuits (based on the RevLib format introduced in [23]), several export
functions (again into the RevLib format, but LATEX and BLIF dumps are also
available), cost calculations, and more. Furthermore, more elaborated methods
for synthesis, optimization, and verification of reversible (and quantum) circuits
are available including:
Synthesis
– A transformation-based method inspired by the concepts of [24] and the

extension based on the Reed Muller spectra [25]
– The BDD-based synthesis method as introduced in [15]
– The KFDD-based synthesis method as introduced in [26]
– The heuristic synthesis with output permutation method as introduced in [27]
– The ESOP-based synthesis method inspired by the concepts of [28]
– The exact synthesis method as introduced in [29]

Optimization
– The window optimization method as introduced in [30]
– The circuit line reduction method as introduced in [31]
– The adding lines optimization method as introduced in [32]

Verification
– The SAT-based equivalence checker as introduced in [19]
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Further Methods
– A näıve method to embed irreversible functions into reversible ones (needed

e.g. to synthesize irreversible functions using the transformation-based
method)

– A simple simulation engine (for reversible circuits working on Boolean values)
– A simple decomposition method that maps a given reversible circuit (com-

posed of Toffoli, Fredkin, and Peres gates) to its equivalent quantum circuit
(composed of NOT, CNOT, V, and V+ gates) inspired by the concepts of [33]
and [34]

– Support of hierarchical circuitry (i.e. modules, flattening of circuits, etc.),
sequential circuits, annotations, and more

– Visualization of circuits

All these tools and algorithms are written in C++ and directly accessible by
an API. That is, they can be used in other C++ programs. Furthermore, all
functions are also exposed as a Python library2 as well as in a graphical user
interface. This enables the user to create and execute customized design flows
as illustrated in the next sections.

3 The Users’ Perspective: Applying RevKit

Accessing the API of RevKit using C++ requires to write fully executable C++
programs which need to be compiled after every modification. In particular when
using the toolkit for the purpose of evaluation and experimentation, this work
flow is very inflexible.

To overcome this limitation, RevKit offers bindings of all functions and al-
gorithms either to the Python language or to a graphical user interface. This
allows to utilize RevKit without re-compilation. At the same time, the high per-
formance of the algorithms is exploited since both, the Python binding as well
as the graphical user interface, directly invoke the respective assembly code.

3.1 Using the Python Interface

In this section, the advantages of the Python bindings are demonstrated by
means of two use cases. First, an interactive application of the Python shell is
outlined. Afterwards, it is shown how to utilize the expressive Python syntax in
order to create compact scripts defining a customized design flow.

Interactive Application in the Python Shell. A Python shell can be uti-
lized enabling a dynamic interaction with the RevKit functions and algorithms.
Furthermore, sophisticated Python shells such as IPython [35] additionally al-
low syntax highlighting, tab completion, UNIX shell interaction, and integrated
documentation.

2 For this purpose, the Boost.Python library was utilized. For further information visit
http://www.boost.org/doc/libs/1 47 0/libs/python/doc/index.html
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$ ipython

In [�]: from revkit import *

In [�]: circ = circuit(2)

In [�]: append not(circ, 0)

Out[�]: <revkit python.gate object at 0xb7348454>

In [�]: append cnot(circ, 0, 1)

Out[�]: <revkit python.gate object at 0xb734848c>

In [�]: circ

Out[�]:

O*

-O

In [�]: init gui()

Out[�]: <PyQt4.QtGui.QApplication object at 0xb72be26c>

In [�]: w = display circuit(circ)

In [�]: w.simulate([False, True])

Fig. 2. Command line interface

As an example, consider the command line flow as outlined in Fig. 2. After
the RevKit library is imported (see Command 1), a circuit consisting of a NOT
and a CNOT gate is created (see Command 2 for the initialization of the circuit
as well as Command 3 and Command 4 for the addition of the gates). Then, the
resulting circuit is printed out on the console (Command 5), displayed in the
GUI (Command 7), and simulated (Command 8). For this purpose, the last two
commands open the GUI as shown on the right-hand side of Fig. 2.

Overall, using RevKit in the Python shell, the user directly gets feedback
for the invoked actions. Thus, it is ideal e.g. for a first examination in order to
observe the behavior of different design flows.

Python Scripts. An alternative to the interactive application is the use of
scripts. They enable e.g. to define sequences of commands that, afterwards, can
be executed on several instances, several times, or with different parameters.

As an example, Fig. 3 shows a Python script that creates an incrementer
circuit and verifies it using exhaustive simulation. After importing the RevKit
Python library (Line 3), a helper function is defined which maps a list of Boolean
numbers to its natural representation (Line 5). The syntax can almost directly
be mapped to the formula

∑
bi
bi ·2i for a b = (b0 . . . bn−1). The size of the circuit

is configurable by a program argument and defined in Line 7. The incrementer
structure of the circuit is built in Lines 8 and 9 by prepending a gate with a
target on line c and control lines on all preceding lines. In order to verify the
correctness of this circuit, the truth table of it is created (Line 11/12). Then, for
each line of the truth table it is checked whether it adheres the specification (Line
13). More precisely, it is checked whether adding 1 to each input value results in
the desired output value. In case the script generates no output, the verification
was successful. Otherwise, an assertion is thrown which can be further inspected,
e.g. by checking the respective values for the variables in and out.
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1 #!/usr/bin/python
2 import sys
3 from revkit import ∗
4

5 def b2d(bits): return sum([b ∗ 2∗∗i for i, b in enumerate(bits)])
6

7 n = int(sys.argv[1])
8 circ = circuit(n)
9 for c in range(n): prepend toffoli(circ, range(c), c)

10

11 spec = binary truth table()
12 circuit to truth table(circ, spec)
13 for [ in, out] in spec.entries: assert((b2d( in) + 1) % 2∗∗n == b2d( out))

Fig. 3. Python script

Overall, using the RevKit bindings and the syntactical features of Python,
scripts also for complex tasks can be written within few lines of code.

3.2 Using the Graphical User Interface

Besides the Python library, also a graphical user interface (GUI) is available
in RevKit. This enables the creation and execution of customized design flows
without writing any line of code. Instead, the respective steps of a design flow
to be executed can easily put together by means of blocks to be connected by a
graph. Each block performs an operation and may have ports for the respective
input parameters and output results. Input ports can be connected to output
ports forming a channel when they support the same data types.

As an example, a Circuit from file block reads a circuit from a given file-name
and passes the resulting data-structure to its single output port of type Circuit.
Then, this block can be connected to a Line Reduction block which takes this
circuit as a parameter and performs the line reduction approach [31]. Afterwards,
the result is provided at the output port of this block. In this manner, more
complex scenarios can be set up.

When executing the design flow, the graph is sorted in a topologically or-
der and is executed level wise. Visual feedback provides the user with current
progress information, i.e. which steps have already been performed and which
step is currently being executed. In the following, two use cases illustrating pos-
sible applications of the RevKit GUI are presented.

Building Custom Design Flows. An example flow is given in Fig. 4. Here,
a reversible function given as truth table is synthesized utilizing a heuristic [24]
as well as an exact [29] approach. Afterwards, the resulting circuits are checked
for equivalence. Besides that, the results of each synthesis run are passed to a
statistics element which provides information e.g. about the circuit cost and also
visualizes the circuit.
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Fig. 4. Example GUI execution

Benchmarking. The elementary blocks in the RevKit GUI are of different
complexity. While some provide very basic operations such as parsing files, more
powerful blocks exist. As an example, the block RevLib Functions provides access
to the RevLib [23] database. A respective block is depicted in its expanded form
in Fig. 5. The table on the left-hand side lists all benchmarks that meet certain
criteria specified on the right-hand side, i.e. functions with more than 5 but less
than 8 inputs as well as functions with more than 3 outputs. When executing
this block, all these functions can be passed to the successive blocks. Therewith,
a whole set of functions can sequentially be applied e.g. to a synthesis approach.
The results of such a process can afterwards be collected in another block which
enables to export a result table in terms of a CSV or LATEX file.

4 The Developers’ Perspective: Extending RevKit

Besides providing tools and algorithms, RevKit also aims to support researchers
in the development of new or improved methods for reversible circuit design. To
this end, RevKit is based on a very modular and extendable framework which
is introduced in more detail in this section. First, the architecture of RevKit is
described followed by a brief discussion of applied design concepts. Afterwards,
it is illustrated, by means of an example, how new approaches can be added to
the framework.
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Fig. 5. Benchmarking example

4.1 Architecture and Design Concepts

The architecture of RevKit is briefly illustrated in Fig. 6. As can be seen, RevKit
consists of three main parts:

– the core, which provides data-structures (e.g. to store functions or circuits)
and basic functionality (like parsing routines, export functions, cost calcula-
tions, circuit modifications) which can be used by every algorithm,

– the respective approaches and methods for reversible circuit design (e.g. syn-
thesis, optimization, or verification), and

– the different applications built on top of the framework (e.g. the generic usage
by means of the Python bindings or a precise application that combines some
algorithms in a certain way).

Additionally, RevKit makes use of third-party libraries like e.g. the Colorado
University Decision Diagram Package (CUDD) [36], the metaSMT framework [37],
and some C++-libraries.

The core and the corresponding algorithms form the main implementation
of the framework. The respective algorithms are completely independent from
each other, but rely on generic interfaces. In doing so, it is possible to utilize
existing methods without a detailed treatment of them. For example, if a new
optimization approach based on re-synthesis is added, the respective synthesis
calls would be invoked by the generic interface. At run-time (or in a precise
application), the respective synthesis approach can then be chosen by parameters
(denoted by the dashed arrow in Fig. 6). This enables a huge flexibility since the
new optimization approach does not only rely on one single synthesis method,
but can exploit all available ones. This also includes synthesis approaches that
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Fig. 6. Architecture of RevKit

will be added in the future. Furthermore, this modular structure (together with
the interfaces) has the advantage that newly added methods do not affect already
implemented functionality. In fact, even removing one approach will not affect
the overall framework from compiling and operating.

Besides that, being prepared for future developments was an important design
criterion during the implementation of RevKit. This can be illustrated very well
by the support of the respective gate libraries for the considered circuits. So far,
RevKit supports the established Toffoli gate, the Fredkin gate, and the Peres
gate as well as the quantum V gate and the quantum V+ gate. However, in
the future other gate types may be used. This would not only affect the data-
structures of RevKit, but would also have implications for many approaches like
simulation or verification. In order to keep RevKit flexible, generic structures
are applied as well. More precisely, a generic data-structure including a so called
target tag is used. These target tags can be defined separately without modifying
the core of the framework. Having these target tags, new gate types can be easily
supported by extending or overriding the concerned methods. For example, in
the case of simulation, only the treatment of a single gate has to be extended
while the overall simulation engine can remain unaltered.

The usage of these design concepts ensures a high extendability of the frame-
work. Furthermore, several scripts are provided to aid developers in creating
new algorithms from scratch. In particular, they generate basic code skeletons
in order to allow an easy integration of new approaches and to make existing
algorithms accessible. The next section illustrates this by means of an example.

4.2 Adding a New Approach to RevKit

Figure 7 shows the complete source code of an optimization approach that can
be added to RevKit in this form. In fact, a window optimization approach is
realized, where sub-circuits are considered from left to right. In each iteration,
the currently considered sub-circuit is re-synthesized. If a sub-circuit with smaller
cost results, the newly generated sub-circuit is substituted with the original one.

In the first lines of Fig. 7, the respective parameters are given, i.e. the resulting
circuit (circ), the original circuit (base), and some settings (settings), which are
parsed into local variables in Lines 4–7. As can be seen, the simulation and the
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1 bool window optimization(circuit& circ, const circuit& base,
2 properties::ptr settings)
3 {
4 unsigned window length = get(settings, ”window length”);
5 simulation func simulation = get(settings, ”simulation”);
6 truth table synthesis func synthesis = get(settings, ”synthesis”);
7 cost function cf = get(settings, ”cost function”);
8

9 unsigned pos = 0u;
10 while (pos < base.num gates())
11 {
12 unsigned length = std::min(
13 window length, base.num gates() − pos);
14 unsigned to = pos + length;
15

16 subcircuit s(base, pos, to);
17

18 binary truth table spec;
19 circuit to truth table(s, spec, simulation);
20

21 circuit new part;
22 bool ok = synthesis(new part, spec);
23

24 bool cheaper = ok && costs(new part, cf) < costs(s, cf);
25

26 append circuit(circ, cheaper ? new part : s);
27

28 pos = to;
29 }
30

31 return true;
32 }

Fig. 7. Sources for a simple optimization approach

synthesis approach are passed by settings and stored in respective variables. As
discussed above, this employs a generic interface, i.e. no concrete simulation or
synthesis approach is invoked but defined from outside when calling the window
optimization algorithm. Then, the original circuit is traversed from left to right
(Line 10) and a sub-circuit of a certain size (defined in the settings) is extracted
and stored in s (Lines 12–16). Afterwards, the function of the considered sub-
circuit is extracted (Lines 18–19) and passed to the synthesis approach (Lines 21–
22). Finally, the costs of the sub-circuits are compared in Line 24 (using a cost
function again specified in the settings). If the newly synthesized sub-circuit is
cheaper than the original one, then this new one is appended to the resulting
circuit. Otherwise, the original sub-circuit is used (Line 26).
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As can be seen, using RevKit this approach can be implemented in a very
compact and straight-forward way. Existing approaches (in this case synthesis
methods) are utilized. Furthermore, the resulting approach is very flexible since
both, the synthesis method and the considered cost function, can be arbitrarily
selected.

5 Conclusions

In this paper, we reviewed the functionality as well as the internals of RevKit
and provided examples and use cases showing how to apply RevKit and its
components in order to design reversible circuits. For this purpose, several in-
terfaces provided by RevKit (Python bindings, the graphical user interface, or
the C++-API) can be exploited. RevKit itself as well as further documentation
is available at www.revkit.org.
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35. Pérez, F., Granger, B.E.: Ipython: A system for interactive scientific computing.
Computing in Science and Engineering 9(3), 21–29 (2007)

36. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.3.1. University of
Colorado at Boulder (2001), CUDD, vlsi.colorado.edu/~fabio/CUDD/

37. Haedicke, F., Frehse, S., Fey, G., Große, D., Drechsler, R.: metaSMT: Focus on
Your Application not on Solver Integration. In: Int’l Workshop on Design and
Implementation of Formal Tools and Systems (November 2011)

vlsi.colorado.edu/~fabio/CUDD/

	RevKit: An Open Source Toolkit 
for the Design of Reversible Circuits
	Introduction
	The RevKit Framework
	The Users' Perspective: Applying RevKit
	Using the Python Interface
	Using the Graphical User Interface

	The Developers' Perspective: Extending RevKit
	Architecture and Design Concepts
	Adding a New Approach to RevKit

	Conclusions
	References




