
Hierarchical Synthesis of Reversible Circuits
Using Positive and Negative Davio Decomposition

Mathias Soeken Robert Wille Rolf Drechsler
Institute of Computer Science, University of Bremen

28359 Bremen, Germany
{msoeken,rwille,drechsle}@informatik.uni-bremen.de

Abstract—Synthesis of reversible circuits is an important
research area providing the basis for a design flow of this
emerging technology. Recently, in the development of scalable
synthesis approaches a significant step forward has been made
by a hierarchical method in combination with Shannon decom-
position. However, this approach leads to circuits with high
costs. In this paper, we propose an alternative that additionally
makes use of positive Davio and negative Davio decomposition.
We show that the usage of these decomposition types offers
several advantages for the synthesis of reversible circuits. Using
the proposed approach, on average the number of lines can be
reduced by 22%, the number of gates by 22%, and the quantum
cost by 32%. In the best case, even reductions of more than 60%
are possible.

I. INTRODUCTION

Nowadays, the continuing trend towards power dissipation
is proving an ever more difficult problem in the development
of smaller and more efficient digital circuits. A significant
part of this problem arises from the non-ideal behavior of
transistors and materials. This can be tackled by higher levels
of integration and new fabrication processes. However, a much
more fundamental problem has already been observed by
Landauer in 1961 [1]. He proved that each time information
is lost, energy is dissipated regardless of the underlying
technology. More precisely, exactly k · T · log 2 Joules of
energy are dissipated for each “lost” bit of information where k
is the Boltzmann constant and T is the temperature. While
this amount of power currently does not sound significant, it
may become crucial considering that (1) in today’s circuitry
millions of operations are performed in every second (and
increasing processor frequencies continue to increase this
number) and (2) more operations are performed with smaller
transistor sizes (i.e. in a smaller area).

As a consequence, Landauer (and later Bennett [2], Fred-
kin [3], Toffoli [4], and others) suggested the use of reversible
circuits, i.e. circuits with an equal amount of input and output
signals, whereby each input assignment maps to a unique
output assignment (i.e. the function represented by the circuit
is a bijection). Since reversible circuits are by definition
information-lossless, power dissipation resulting from Lan-
dauer’s principle, as described above, can be decreased or even
eliminated. Recently, a physical implementation of reversible
circuits exploiting these observations has been successfully
realized [5]. Furthermore, research in this domain is continuing
to gain more interest because of the recent achievements in the
development of quantum circuits, where reversible circuits can
also be exploited [6].

Driven by this, the development of future CAD tools for
this kind of circuits is an active research area. In particular,
synthesis of reversible circuits is being intensely studied.
Exact approaches [7], [8], [9], [10], [11] and heuristic ap-
proaches [12], [13], [14], [15] have been introduced in the
past. However, they are only applicable for functions with up
to about 30 variables (see also Section III for a more detailed
treatment). This is mainly caused by the fact that most of
these synthesis approaches rely on a truth table description.
As a consequence, a hierarchical synthesis approach [16] has
recently been proposed which works on a symbolic representa-
tion of the function to be synthesized, thereby entailing the use
of Binary Decision Diagrams (BDD) [17]. BDDs decompose
a given function into smaller sub-functions using the Shannon
decomposition. These sub-functions can be handled by the
above synthesis methods. Composing the resulting sub-circuits
produces a reversible circuit representing the overall function
to be synthesized. In this sense, [16] provided the first method
which can realize circuits for functions with more than 100
inputs – an important step towards the development of scalable
synthesis approaches. However, the resulting circuits are of
high cost.

In this paper, we propose an alternative hierarchical synthe-
sis approach for reversible circuits. In contrast to [16], positive
Davio and negative Davio decomposition are additionally
utilized. It has been shown that the usage of positive Davio
and negative Davio leads to optimization in classical circuit
synthesis [18], [19], [20]. We show why the usage of these
decomposition types offers several advantages during synthesis
especially when working with reversible gates. Motivated by
this, a hierarchical synthesis approach is introduced exploiting
these benefits. Experimental results show that with our alter-
native, reversible circuits with 22% fewer circuit lines, 22%
fewer gates, and 32% fewer quantum cost can be realized
on average. In the best case, reductions of more than 60%
are possible. The algorithm is public available in the RevKit
toolkit [21].

The remainder of this paper is structured as follows. Sec-
tion II provides the background on reversible circuits while
Section III briefly reviews recently introduced synthesis ap-
proaches. Afterwards, the application of positive Davio and
negative Davio decomposition is motivated in Section IV
leading to an alternative synthesis approach presented in Sec-
tion V. Finally, experimental results obtained by the proposed
approach are reported in Section VI and the paper is concluded
in Section VII, respectively.

143978-1-61284-292-9/10/$26.00 ©2010 IEEE

x1 x1

x2 x2

x3 x3 ⊕ x1x2

(a) Toffoli gate

1 0

0 1

1 0

(b) Toffoli circuit

Fig. 1. Toffoli gate and Toffoli circuit

II. REVERSIBLE CIRCUITS

Reversible circuits are digital circuits with the same number
of input signals and output signals. Furthermore, reversible
circuits realize bijections only, i.e. each input assignment maps
to a unique output assignment. Accordingly, computations can
be performed in both directions (from the inputs to the outputs
and vice versa).

Reversible circuits are composed as cascades of reversible
gates. The Toffoli gate [4] is widely used in the literature
and also considered in this paper. A Toffoli gate over the
inputs X = {x1, . . . , xn} consists of a (possibly empty) set
of control lines C = {xi1 , . . . , xik} ⊂ X and a single target
line xj ∈ X \ C. The Toffoli gate inverts the value on the
target line if all values on the control lines are assigned to 1
or if C = ∅, respectively. All remaining values are passed
through unaltered.

Example 1: Fig. 1(a) shows a Toffoli gate drawn in standard
notation, i.e. control lines are denoted by , while the target
line is denoted by . A circuit composed of several Toffoli
gates is depicted in Fig. 1(b). This circuit maps e.g. the input
101 to the output 010 and vice versa.

To measure the cost of a reversible circuit, different metrics
are applied (sometimes depending on the addressed technol-
ogy). In particular, the number of circuit lines, the number of
gates, and quantum cost [22] are considered in the literature.
The latter considers gates with more control lines to be more
costly. For example, a Toffoli gate with no or only one control
line has quantum cost of 1, while a Toffoli gate with two
control lines has quantum cost of 5.

III. RECENT SYNTHESIS APPROACHES

In the last years, synthesis of reversible circuits has been in-
tensely considered resulting in dozens of different approaches.
Exact synthesis methods determine a minimal solution with
regard to a cost metric, e.g. the number of gates or quantum
cost, respectively. Methods based on a depth-first traversal [7],
group theory [8], reachability analysis [9], Boolean satis-
fiability [11], and Quantified Boolean functions [10] have
been proposed. However, since ensuring minimality causes an
enormous computational overhead, all these approaches are
only applicable to functions with up to six variables.

In contrast, heuristic methods enabled the synthesis of
larger functions. Here, in particular the transformation-based
approach introduced in [12] is of interest. The basic idea of this
approach is to traverse each line of the truth table (representing
the function f to be synthesized) and add gates to the circuit
until the output values match the input values (i.e. until the
identity is achieved). Gates are thereby chosen so that they

do not alter already considered truth table lines. This strategy
has been adopted and further extended leading to approaches
that additionally incorporate decision diagrams [13], positive-
polarity Reed-Muller expansion [14], or Reed-Muller spec-
tra [15]. However, even with these extensions only functions
with up to about 30 variables can be synthesized.

To overcome this limitation, hierarchical synthesis ap-
proaches provide a solution. Here f , the (possibly very large)
function to be synthesized, is decomposed into smaller sub-
functions. This decomposition is repeatedly applied until the
respective sub-functions evaluate to a constant. Then, for
each decomposition, a sub-circuit representing this operation
can be synthesized. By composing all sub-circuits, a circuit
representing the desired function f results.

Recently, an approach applying such a scheme has been
introduced in [16]. Shannon decomposition has been thereby
applied, whereby the sub-functions are the corresponding co-
factors of f , i.e.

f = xi · fxi=0 + xi · fxi=1

where fxi=0 (fxi=1) is the negative (positive) co-factor of f
obtained by assigning xi to 0 (1).

For this purpose, Binary Decision Diagrams (BDDs) [17]
have been utilized. A BDD is a directed graph G = (V,E)
where each terminal node represents the constant 0 or 1 and
each non-terminal node represents a (sub-)function. Each non-
terminal node v ∈ V has thereby two succeeding nodes low(v)
and high(v). If v is representing the function f and labeled
with the variable xi, then the corresponding sub-functions
represented by the succeeding nodes are the co-factors fxi=0

(low(v)) and fxi=1 (high(v)). Thus, a BDD naturally exposes
the Shannon decomposition and therefore can be used for hier-
archical synthesis. Having a BDD representing a function f as
well as its sub-functions derived by Shannon decomposition,
a reversible circuit for f can be obtained as shown by the
following example.

Example 2: Figure 2(a) shows a BDD representing the
function f = x1x2x3x4 +x1x2x3x4 +x1x2x3x4 +x1x2x3x4

as well as the respective co-factors resulting from the appli-
cation of the Shannon decomposition. The co-factor f1 can
easily be represented by the primary input x4. Having the value
of f1 available, the co-factor f2 can be realized by the first
two gates depicted in Fig. 2(b)1. In this manner, respective sub-
circuits can be added for all remaining co-factors until a circuit
representing the overall function f results. The remaining steps
are shown in Fig. 2(b).

That is, to realize (possibly large) functions, decomposition
is applied leading to smaller sub-functions for which existing
synthesis approaches can be applied. Then, the resulting sub-
circuits can be composed to realize the overall function. As
can be seen, this method sometimes requires additional circuit
lines with constant inputs in order to preserve (temporary)
values. For example, as already shown above, an additional
line is required to realize the co-factor f2 without losing the

1Note that an additional circuit line is added to preserve the values of x4

and x3 which are still needed by the co-factors f3 and f4, respectively.

144

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4 + x2x3x4 f5 = x2x3x4 + x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1

0 0

1

1

0

1
0

1

0 0

1

(a) BDD

f2 f3 f4 f5 f6 f

f2

f3

f4

f5

f6

f5 needs to preserve f2

x1 −

x2 −

x3 −

x4, f1 −

0 f

1 −

0 −

0 −

(b) Resulting circuit

Fig. 2. Example for BDD-based synthesis

input value x4 (which is still needed to realize f3). A similar
issue occurs for the co-factor f5. Here, the values of f2 and f4

have to be preserved since they are still needed later to realize
co-factor f6. Despite this “overhead”, the approach enables
synthesis of functions with more than 100 variables for the
first time.

IV. APPLYING
POSITIVE AND NEGATIVE DAVIO DECOMPOSITION

Besides Shannon, further decompositions of Boolean func-
tions exist. In particular, positive Davio and negative Davio
decomposition defined by

f = fxi=0 ⊕ xi · fxi=2 (pos. Davio)

f = fxi=1 ⊕ xi · fxi=2 (neg. Davio)

with fxi=2 = fxi=0 ⊕ fxi=1 have been established in the
past2. For certain types of functions they allow more compact
decompositions than the Shannon method, i.e. they enable to
decompose a given function into a smaller number of different
sub-functions (see e.g. [24]). Besides that, in particular for
synthesis of reversible circuits these decomposition types
provide some interesting properties.

2In fact, it has been proven that Shannon, positive Davio, and negative
Davio decomposition are sufficient to efficiently decompose Boolean func-
tions [23].

xi xi

fxi=0 f

fxi=1 −

(a) Shannon

xi xi

fxi=0 f

fxi=2 fxi=2

(b) Positive Davio

Fig. 3. Reversible circuits realizing different decompositions

To illustrate this, consider Fig. 3 showing the minimal
circuits representing the Shannon decomposition, (i.e. com-
puting f = xi · fxi=0 +xi · fxi=1) and positive Davio decom-
position (i.e. computing f = fxi=0⊕ xi · fxi=2), respectively.
While for the Shannon decomposition two gates (and quantum
cost of 6) are required, the positive Davio decomposition can
be realized by one single gate (and quantum cost of 5) only.
Furthermore, applying positive Davio, the value of fxi=2 is
preserved. Thus, the additional circuit lines needed to preserve
the respective values (such as those in the example of Fig. 2)
can be saved.

Taking all this into account, it is worth considering positive
and negative Davio decomposition in the context of hierarchi-
cal synthesis of reversible circuits since

• for certain functions they enable decomposing a given
function into a smaller number of different sub-functions,

• in many cases they enable more compact realizations as
reversible circuits, and

• they enable the preservation of the values of some co-
factors without additional circuit lines so that the overall
line count can be kept small.

In the next section, a hierarchical synthesis approach is intro-
duced that utilizes positive and negative Davio decomposition
and, thus, exploits these advantages.

V. SYNTHESIS APPROACH

Based on the observations from the previous section, a new
hierarchical synthesis approach is derived which additionally
utilizes positive Davio and negative Davio decomposition. To
efficiently perform the respective decompositions Kronecker
Functional Decision Diagrams (KFDDs) [25] are applied.
Similar to BDDs, KFDDs provide an efficient data-structure
for the representation of Boolean functions. Additionally,
KFDDs enable the decomposition of a (sub-)function not only
with respect to Shannon but also with respect to positive and
negative Davio.

Therefore, a decomposition type is assigned to each variable
of the corresponding Boolean function. To obtain the function
f represented by a node v the formula f = low(f) ⊕
xi · high(f) is used for positive Davio decomposition and
f = low(f) ⊕ xi · high(f) is used for negative Davio
decomposition, respectively, where low(f) and high(f) are
the functions represented by the descending nodes of v.

Having available a KFDD G = (V,E) representing the
function to be synthesized, the following steps are performed.

1) The KFDD is traversed in a depth-first manner, i.e. each
node v ∈ V is visited.

145

1 xi

f

high(f)low(f)

0 1

xi xi

low(f) f

high(f) −
Shannon

xi xi

low(f) f

high(f) high(f)

positive Davio

xi xi

low(f) −
high(f) f

negative Davio

2 xi

f f f

high(f)low(f)

0 1

0 f

xi xi

low(f) low(f)

high(f) high(f)

Shannon

0 f

xi xi

low(f) low(f)

high(f) high(f)

positive Davio

0 f

xi xi

low(f) low(f)

high(f) high(f)

negative Davio

3 xi

f

1low(f)

0 1

0 f

xi xi

low(f) low(f)

Shannon

0 f

xi xi

low(f) low(f)

positive Davio

1 f

xi xi

low(f) low(f)

negative Davio

4 xi

f

high(f)1

0 1

1 f

xi xi

high(f) high(f)

Shannon

1 f

xi xi

high(f) high(f)

positive Davio

1 f

xi xi

high(f) high(f)

negative Davio

7 xi

f

0low(f)

0 1

0 f

xi xi

low(f) low(f)

Shannon

8 xi

f

high(f)0

0 1

0 f

xi xi

high(f) high(f)

Shannon

9 xi

f

01

0 1

1 f

xi xi

Shannon

5 xi

f

g

0 1

0 f

xi xi

g g

positive Davio

0 f

xi xi

g g

negative Davio

6 xi

f f f

1

0 1

1 f

xi xi

positive Davio

0 f

xi xi

negative Davio

Fig. 4. Reversible cascades representing the different decompositions

2) For each node v, a cascade of reversible gates repre-
senting the respective co-factor is generated. Temporary
values from previously traversed nodes (or co-factors,
respectively) are thereby utilized.

3) Finally, all generated sub-circuits are composed.
Depending on the decomposition type applied to the respective
nodes, different cascades result in Step 2. Fig. 4 lists the most
frequent cases which may occur in the proposed approach3.
Note thereby that some structures only occur for certain
decomposition types. For example, Case 5 and Case 6 only
occur if Davio decomposition is applied. Similarly, Case 7,
Case 8, and Case 9 is possible with Shannon decomposition
only.

Example 3: Figure 5(a) shows a KFDD representing the
function f = x1x2x3x4 +x1x2x3x4 +x1x2x3x4 +x1x2x3x4

from Example 2. Positive Davio decomposition is applied to
each node. Traversing the data-structure as described above,
first the co-factor f1 is considered. This can be represented by
the primary input x4. Then, the co-factor f2 can be realized
(Case 3 from Fig. 4). Continuing this process until the depth
first-traversal is completed all resulting sub-circuits can be
composed. This leads to the final circuit depicted in Fig. 5(b)
and representing the desired function f .

As shown by the example, using the proposed approach
a more compact reversible circuit can be realized for the

3Due to page limitations, cases including e.g. complement edges are
omitted.

x1

x2

x3 x3

x4

0 1

f

f4 = x3x4 ⊕ x2x3 ⊕ x2x4

f3 = x3x4 f2 = x3 ⊕ x4

f1 = x4

0

1

0
1

1

0
1

0

10

(a) KFDD

f2 f3 f4 f

f2

f3 f4

x1 −

x2 −

x3 −

x4, f1 −

0 −

0 f

(b) Resulting circuit

Fig. 5. Example for synthesis exploiting Davio decomposition

146

TABLE I
GATE COUNT AND QUANTUM COST OF DIFFERENT REALIZATIONS

Case Shannon pos. Davio neg. Davio
Gates Cost Gates Cost Gates Cost

1 2 6 1 5 2 6
2 3 11 2 6 3 7
3 3 7 2 2 2 2
4 2 6 1 5 2 6
5 – – 2 6 1 5
6 – – 1 1 1 1
7 2 6 – – – –
8 1 5 – – – –
9 1 1 – – – –

considered function. More precisely, the number of lines is
reduced by 2, the number of gates by 5, and the quantum
cost by 17 for this simple example. However, also in general,
the proposed approach leads to circuits more likely to be
compact. Besides the fact that certain functions can often be
decomposed into a smaller number of different sub-functions,
in particular this is caused by the more compact realizations
which are possible if Davio decomposition is applied.

To further illustrate this, Table I compares the resulting
gates and quantum cost for the respective cases (according
to Fig. 4). Even if this comparison is only an approximation
(since according to the decomposition type, the respective co-
factors are completely different), a clear trend can be observed:
The positive Davio decomposition usually can be realized with
a significantly smaller number of gates and costs, respectively.
Sub-circuits representing the negative Davio decomposition
are also more compact than their Shannon equivalent.

The experimental evaluation in the next section confirms
these general observations by showing that significant im-
provements can be achieved using the proposed method.

VI. EXPERIMENTAL EVALUATION

To evaluate the proposed approach, the hierarchical synthe-
sis method introduced in the last section has been implemented
in C++ using RevKit [21] and compared to an implementation
exploiting Shannon decomposition only (based on the concepts
of [16]). Therefore, the CUDD package [26] has been used
to perform the respective decompositions for BDDs and the
PUMA decision diagram package [27] has been used to
perform the respective decompositions for KFDDs. Standard
optimization techniques (e.g. sifting [28]) have been thereby
utilized. Benchmarks from the LGSynth package have been
used. All experiments have been carried out on an Intel Core
2 Duo 2.26 GHz with 3 GB of main memory.

Table II lists the resulting numbers. The first column denotes
the name of the considered functions. The following columns
give the respective number of lines (Lines), the number of
gates (Gates), the resulting quantum cost (Cost), the number
of sub-functions (or nodes respectively) resulting from the
decomposition (Nodes), as well as the run-time (Time, in sec-
onds). It is thereby distinguished between the results obtained
by the method from [16] (where Shannon decomposition
only is applied) and the proposed method, where all three
decompositions are applied. The differences are reported in
the rightmost columns.

First of all, it can be concluded that run-time is negligible
for all considered benchmarks. That is, performing the decom-
positions and adding the respective sub-circuits can be done
very quickly.

Besides that, the results confirm the major assumptions
made in Section IV. Using Davio decomposition enables
the decomposition of the majority of the functions into a
smaller number of different sub-functions (as can be seen by
comparing the number of nodes). That is, a smaller number of
sub-functions has to be realized and, thus, a smaller number
of sub-circuits has to be composed, respectively.

Furthermore, the generally more compact realizations of
the respective decompositions pay off. As a special case,
consider the function apex4. Even though the number of
nodes increases, i.e. Davio decomposition leads to more sub-
functions in this case (which is an exception from the previous
observation), the quantum cost can be significantly reduced.
This is because the additional overhead is compensated by the
much more compact realization of the Davio decomposition.

Overall, these two aspects in particular are the reasons why,
in the majority of the cases, significantly smaller reversible
circuits can be synthesized using the proposed approach.
Only the circuits for the functions ex4p, sao2, and table3 are
exceptions. Additionally, for a small number of benchmarks
(e.g. cordic, rd73, or vg2) only some of the cost criteria
(e.g. the quantum cost) can be improved while, for the other,
some increases are reported. Nevertheless, all these increases
are marginal. In contrast, over all circuits, the number of lines
can be reduced by 22%, the number of gates by 22%, and the
quantum cost by 32% on average. In the best case (i.e. for
seq) reductions of 57% (lines), 57% (gates), and even 65%
(quantum cost) can be achieved, respectively.

VII. CONCLUSION

In this paper, we introduced an alternative hierarchical
synthesis approach based on positive and negative Davio
decomposition. In comparison with Shannon decomposition,
this leads to the following advantages: (1) certain functions
can be decomposed into a smaller number of sub-functions,
(2) the respective decompositions can be realized with smaller
costs, and (3) more values are implicitly preserved keeping
the number of additional circuit lines small. Overall, using
the proposed approach, on average, the number of lines can
be reduced by 22%, the number of gates by 22%, and the
quantum cost by 32%. In the best case, even reductions of
more than 60% are possible.

ACKNOWLEDGMENT

This work was supported by the German Research Founda-
tion (DFG) (DR 287/20-1).

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Dev., vol. 5, p. 183, 1961.

[2] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[3] E. F. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3/4, pp. 219–253, 1982.

147

TABLE II
EXPERIMENTAL EVALUATION

Shannon decomposition only [16] Proposed Approach
Function Lines Gates Cost Nodes Time Lines Gates Cost Nodes Time ∆Lines ∆Gates ∆Cost
5xp1 30 90 254 42 0.02 36 89 229 36 0.01 6 -1 -25
9sym 27 62 206 25 0.00 29 60 148 26 0.00 2 -2 -58
alu4 541 2186 7222 804 0.03 334 1149 3265 490 0.07 -207 -1037 -3957
apex1 1084 3586 11058 1394 0.42 910 3218 8350 1166 0.18 -174 -368 -2708
apex2 498 1746 5922 652 0.18 333 1011 2883 417 2.32 -165 -735 -3039
apex4 547 2551 8343 909 0.02 552 2645 7325 915 0.06 5 94 -1018
apex5 1025 2909 10349 1092 0.06 490 1262 3002 429 0.16 -535 -1647 -7347
b12 61 156 468 66 0.00 58 125 353 54 0.00 -3 -31 -115
bw 87 307 943 104 0.00 81 265 673 91 0.00 -6 -42 -270
clip 66 228 704 87 0.00 66 185 517 85 0.01 0 -43 -187
con1 16 32 96 16 0.00 15 25 77 13 0.00 -1 -7 -19
cordic 52 101 325 43 0.02 59 105 285 46 0.00 7 4 -40
cps 923 2763 8487 1071 0.03 628 2259 5771 789 0.06 -295 -504 -2716
duke2 325 975 2751 387 0.01 226 765 1989 287 0.02 -99 -210 -762
e64 195 387 907 132 0.02 193 383 891 128 0.05 -2 -4 -16
ex1010 670 2982 9766 1080 0.03 658 2883 9403 1062 0.06 -12 -99 -363
ex4p 476 1138 3494 489 0.03 525 1302 3930 543 0.22 49 164 436
ex5p 206 647 1843 242 0.02 204 635 1663 234 0.02 -2 -12 -180
inc 53 187 579 73 0.01 56 196 544 70 0.00 3 9 -35
misex1 35 104 304 36 0.00 33 87 255 32 0.00 -2 -17 -49
misex2 99 220 588 86 0.00 86 181 449 66 0.00 -13 -39 -139
misex3c 441 1513 4769 618 0.03 302 985 2853 407 0.06 -139 -528 -1916
misex3 428 1473 4661 602 0.04 431 1486 4426 612 0.08 3 13 -235
pdc 619 2080 6500 794 0.09 542 1722 4918 675 0.11 -77 -358 -1582
rd53 13 34 98 17 0.00 15 30 62 13 0.00 2 -4 -36
rd73 25 73 217 31 0.00 25 52 108 21 0.00 0 -21 -109
rd84 33 103 299 42 0.00 32 70 154 29 0.00 -1 -33 -145
sao2 74 211 667 86 0.00 77 226 726 91 0.01 3 15 59
seq 1617 5990 19362 2163 0.54 694 2529 6697 884 0.27 -923 -3461 -12665
spla 489 1709 5925 590 0.06 484 1594 4358 583 0.09 -5 -115 -1567
sqrt8 30 76 240 35 0.00 29 63 163 29 0.00 -1 -13 -77
squar5 28 81 253 35 0.00 27 62 154 26 0.00 -1 -19 -99
t481 30 52 152 21 0.01 26 35 91 16 0.01 -4 -17 -61
table3 554 1988 6276 782 0.02 592 2110 6514 827 0.08 38 122 238
table5 551 1893 5737 704 0.02 468 1749 4865 624 0.11 -83 -144 -872
vg2 198 532 1728 233 0.01 200 555 1491 236 0.04 2 23 -237
xor5 6 8 8 6 0.00 6 6 6 5 0.00 0 -2 -2∑

12152 41173 131501 -2630 -9069 -41913

[4] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[5] B. Desoete and A. D. Vos, “A reversible carry-look-ahead adder using
control gates,” INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp.
89–104, 2002.

[6] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp.
710–722, 2003.

[8] G. Yang, X. Song, W. N. N. Hung, and M. A. Perkowski, “Fast synthesis
of exact minimal reversible circuits using group theory,” in ASP Design
Automation Conf., 2005, pp. 1002–1005.

[9] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, “Optimal
synthesis of multiple output Boolean functions using a set of quantum
gates by symbolic reachability analysis.” IEEE Trans. on CAD, vol. 25,
no. 9, pp. 1652–1663, 2006.

[10] R. Wille, H. M. Le, G. W. Dueck, and D. Große, “Quantified synthesis
of reversible logic,” in Design, Automation and Test in Europe, 2008,
pp. 1015–1020.

[11] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple
control Toffoli network synthesis with SAT techniques,” IEEE Trans.
on CAD, vol. 28, no. 5, pp. 703–715, 2009.

[12] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[13] P. Kerntopf, “A new heuristic algorithm for reversible logic synthesis,”
in Design Automation Conf., 2004, pp. 834–837.

[14] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. on CAD, vol. 25, no. 11, pp.
2317–2330, 2006.

[15] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the synthesis
of reversible Toffoli networks,” ACM Trans. on Design Automation of
Electronic Systems, vol. 12, no. 4, 2007.

[16] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[17] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[18] S.-B. Ko and J.-C. Lo, “Efficient Decomposition Techniques for FP-
GAs,” in HiPC, ser. Lecture Notes in Computer Science, S. Sahni, V. K.
Prasanna, and U. Shukla, Eds., vol. 2552. Springer, 2002, pp. 630–642.

[19] S.-B. Ko, “A new partitioning method for LUT-based FPGAs,” in Elec-
trical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian
Conference on, vol. 1, 4-7 2003, pp. 103 – 106 vol.1.

[20] S.-B. Ko and J.-C. Lo, “Efficient Realization of Parity Prediction
Functions in FPGAs,” J. Electronic Testing, vol. 20, no. 5, pp. 489–
499, 2004.

[21] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” in Workshop on Reversible Computation,
2010, RevKit is available at http://www.revkit.org.

[22] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

[23] B. Becker and R. Drechsler, “How many decomposition types do we
need?” in European Design & Test Conf., 1995, pp. 438–443.

[24] B. Becker, R. Drechsler, and M. Theobald, “OKFDDs versus OBDDs
and OFDDs,” in ICALP, ser. LNCS, vol. 944. Springer Verlag, 1995,
pp. 475–486.

[25] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. Perkowski,
“Efficient representation and manipulation of switching functions based
on ordered Kronecker functional decision diagrams,” in Design Automa-
tion Conf., 1994, pp. 415–419.

[26] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.4.2.
University of Colorado at Boulder, 2001.

[27] R. Drechsler and B. Becker, “PUMA: An OKFDD-package and its
implementation,” in European Design & Test Conf., 1995, university
Booth.

[28] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in Int’l Conf. on CAD, 1993, pp. 42–47.

148

